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Abstract

The PandABlocks framework comprises the FPGA logic,

TCP server, webserver, boot sources and root filesystem,

developed for the PandABox platform by Diamond Light

Source and Synchrotron Soleil, for advanced beamline

scanning applications. The PandABox platform uses

a PicoZed System-on-Module, comprising a Zynq-7030

SoC, coupled to a carrier board containing removable

position encoder modules, as well as various input and

outputs. An FMC connector provides access to ADC/DACs

or additional I/O, and gigabit transceivers on the Zynq

allow communication with other systems via SFP modules.

Specific functions and hardware resources are represented

by functional blocks, which are run-time configurable

and re-wireable courtesy of multiplexed data and control

buses shared between all blocks. Recent changes to the

PandABlocks framework are discussed which allow the auto-

generation of the FPGA code and tcl automation scripts,

using Python and the jinja2 templating engine, for any

combination of functional blocks and SFP/FMC modules.

The framework can target hardware platforms other than

PandABox and could be deployed for other Zynq-based

applications requiring on-the-fly reconfigurable logic.

INTRODUCTION

Many x-ray beamlines conduct experiments which involve

moving a motor and synchronously acquiring data from a

detector. When detector speeds are slow, it is sufficient to

step scan the motor, allowing it to move and settle between

each detector frame. For many modern beamlines, with

detector frame rates in the hundreds or thousands of hertz

range, continuous scanning is required, where the motor

constantly moves through a trajectory while the detector is

acquiring. This technique reduces detector dead-time, but

requires precise synchronisation between motion control

systems and detectors. To achieve this, the PandABox

(Position and Acquisition Box) platform was developed by

Diamond Light Source (DLS) and Synchrotron Soleil as

a FPGA-based solution for motion encoder and detector

trigger processing [1].

The PandA collaboration began in 2015 to develop a

common platform to replace their previous generation of

in-house systems for beamline synchronisation (Fig. 1):

Zebra at DLS; and SPIETBOX at SOLEIL. Both systems

∗ glenn.christian@diamond.ac.uk

Figure 1: The PandABox collaboration between Diamond

Light Source and SOLEIL.

are based around a Xilinx FPGA; a Spartan-6 in the case

of Zebra, and Spartan-3 in the case SPIETBOX. The goals of

PandABox were to develop a flexible system to address the

increasingly demanding requirements for beamline scanning,

and to overcome concerns with component obsolescence and

technical limitations of Zebra and SPIETBOX. A secondary

goal was to share resources between DLS and SOLEIL, with

SOLEIL taking primary responsibility for the electronic

and mechanical design and DLS developing the FPGA

firmware, software and user interface. The hardware design

for PandABox is freely available on the Open Hardware

Repository (OWHR) [2], and is commercially available from

Quantum Detectors [3].

THE PandABox HARDWARE

The PandABox hardware is shown in Fig. 2 [4, 5]. The

complete assembly is designed to fit within a 19 inch, 1U

rack. The system comprises a custom carrier board and

encoder daughter cards, and an off-the-shelf PicoZed Z7030

System-on-module (SoM), produced by Avnet [6]. The

PicoZed SoM contains a Xilinx Zynq-7030 System-on-Chip

(SoC), as well as various on-board peripherals such as

DDR3 and QSPI flash memory, ethernet and USB interface

chips. The Zynq-7030 comprises Kintex-equivalent FPGA

programmable logic (PL) fabric, alongside an embedded

dual-core ARM Cortex A9 processor system (PS). Signals

from the PS, PL, and peripherals, are brought out on micro-

headers on the underside of the SoM PCB, where they

connect to the carrier board. A Xilinx Spartan-6 FPGA

is also fitted to the carrier to provide addition I/O and

monitoring capabilities, due to a lack of sufficient pins on

the Zynq SoC [1]. The Spartan-6, referred to as the ’Slow
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Figure 2: PandABox platform: internal view.

FPGA’ due to its use with non-time critical signals, connects

via an SPI link to the Zynq PL.

PandABox can interface with up to four motor encoders

via D-type connectors on the rear panel. The encoder

cards are designed to support a variety of incremental and

absolute protocols, such as quadrature, SSI, and BiSS-C.

The use of removable daughter cards allows for site specific

variants of the cards with different external interfacing, and

both SOLEIL and Diamond maintain their own versions of

the encoder cards adapted to their individual requirements.

The front panel provides six TTL inputs and ten TTL

output on BNC connectors, and two LVDS inputs and two

outputs on LEMO connectors, used, for example, for detector

triggering.

The carrier board contains three SFP sockets and one low-

pin count (LPC) FPGA mezzanine card (FMC) connector,

to provide extended functionality and additional I/O such as

ADCs and DACs. The SFP ports provide the capability

for fast serial communication between PandABox units

and other devices, such as an MRF event generator [7] for

synchronisation with the accelerator timing system, making

use of the multi-gigabit transceivers (MGTs) on the Zynq.

The MGTs have been tested in loopback mode at up to

6.25 Gbps [4], and are used at DLS in the ’panda_sync’

block to share data between PandABoxes at a rate of 5 Gbps.

The FMC socket provides an interface to a range of FMC

devices. At DLS this is primarily used with an 8-channel

custom 24V I/O card used for receiving GPIO triggers from

motor controllers, and FMC analogue-to-digital and digital-

to-analogue converters, such as the D-TACQ ACQ430 [8].

Space is reserved on the carrier board behind the FMC to

allow for fitting an extended-length (ELF) FMC card, such

as the D-TACQ ACQ427, for which a dedicated 15V power

supply is provided.

The carrier board also provides a microSD card slot for

non-volatile storage, an RS-232 serial port, gigabit ethernet

and USB2 port; all connected to the Zynq PS. The FPGAs

are connected to a JTAG chain, brought out on the rear panel,

that can be used for configuration and debugging, however

in routine operation the FPGAs are configured via the linux

OS on the Zynq PS.

THE PandABlocks FRAMEWORK

The PandABlocks framework comprises the boot-loaders,

Linux kernel image and root filesystem for the PS; FPGA

firmware for the PL; and TCP server, client and web-GUI.

The hierarchy of the software framework is shown in Fig. 3.

The ’rootfs’ build system combines the Zynq first-stage

bootloader (FSBL) with the built uboot sources to form

the second stage bootloader, as well as building the linux

kernel from sources and assembling the root filesystem. The

configuration of the PS block design is made within the IP

Integrator tool of Vivado as part of the FPGA build, and is

then exported to the build system for the rootfs. As such,

there are interdependencies between the rootfs build and the

FPGA build.

Figure 3: PandABlocks software stack.

The TCP server runs on the Zynq PS and acts as an

interface to the FPGA registers and serves as a bridge
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between the FPGA and remote client systems. The server

publishes two sockets, one for configuration control, and the

other for streamed data capture. The configuration control

socket accepts simple ASCII commands and returns all

data in readable ASCII format. The data capture socket

supports no commands and simply streams captured data

as ASCII text or in a lightly structured binary format. A

variety of clients can access the TCP server, including EPICS

and TANGO. For graphical configuration and interrogation,

a webserver and web-GUI were developed, based on the

Malcolm middlelayer framework, developed by DLS for

continuous scanning applications [9].

At the core of the PandABlocks framework, providing

flexibility and modularity, is the concept of Functional

Blocks (FBs) [10]. FBs represent specific functions or

hardware resources, and can be both reconfigured and

rewired at run-time, i.e. without the need to rebuild the

FPGA logic. Hardware FBs usually access external I/O;

examples are LVDS and TTL input and output blocks, and

position encoder inputs and outputs. Examples of ’soft’ FBs

include 5-input look-up tables, set/reset gates, clock dividers,

pulse generators and sequencer blocks.

Each FB has its own set of configuration and status

registers (CSRs) allocated and all FB can access shared

control and data buses. By default, 128 KB of memory is

allocated for the CSRs. This is divided into 32 pages of

4 KB, with each page addressing one functional block. This

is further subdivided to allow for up to 16 instances of each

FB, providing up to 64 registers, each 32-bit wide, for each

block instance.

Figure 4 shows a diagram representing the blocks and the

bus structure. The bit_bus can accommodate 128 single

control bits, and is used to communicate status signals

between FBs. The pos_bus can carry up to 32 data words,

each of 32 bits, and is used for transferring position type

signals between blocks, for example position encoder signals

between process steps. Mulitplexers on the position and

bit type inputs to blocks allow the arbitrary wiring of

signals between blocks. One special block, Position Capture

(PCAP), is responsible for the capture of the signals on the

pos and bit bus, via DMA transfer to the Zynq PS subsystem.

Figure 4: Functional block architecture.

The web-GUI provides a graphical representation of

the connections between functional blocks for a given

application. Blocks available within the design can be wired

together depending on the data type of the block’s ports,

and parameters can be set and read back for each block. An

example is shown in Fig. 5 for a bi-direction raster, or ’snake’

scan. In this example, two encoder positions are input to a

sequencer block, via the pos bus. The sequencer block is

configured to trigger a detector using an LVDS output, based

on comparing the position values from the two encoders with

a table of compare points. The PCAP block is also triggered

at the same time as the output, to provide timestamping and

capture of other encoder values.

BUILD AUTOMATION

Whilst PandABlocks provided ease of configuring and

wiring functional blocks at run-time, the task of adding

new functional blocks to a design, and creating arbitrary

combination of SFP and FMC application modules, could

be cumbersome and was often prone to error. It was therefore

very desirable to automate these processes as much as

possible. The generation of the control module for each FB,

for interfacing the CSR buses, was already automatically

generated, as was the allocation of signals to the position

and bit buses. This was done using Python and the jinja2

templating engine, with the VHDL files being produced

from templates, and Python variables to keep track of the bus

usage. A recent effort was made to extend the autogeneration

to include other necessary HDL files, as well as tcl files used

in the FPGA build process.

A secondary goal of this work was to facilitate the addition

of new hardware targets to the framework. With this in

mind, a distinction is made between files which are target-

dependant and those that are generic to PandABlocks.

Figure 6 illustrates the new autogeneration framework.

The configurations are defined through a set of text-based

ini files. For each configuration, an app.ini file defines the

set of soft blocks (as well as SFP and FMC blocks) that are

required, as well as specifying the target hardware. For each

target, a target.ini file defines the hardware, or carrier, blocks

available to it, as well any physical constraints specific to the

carrier such as the number of SFP and FMC ports, which the

Python code will ensure are not exceeded in the app.ini file.

For the purpose of autogeneration, SFP and FMC blocks

are treated as ’soft’ blocks, as multiple FMC and SFP based

applications are supported, and in the case of PandABox,

a different application can be implemented on each of the

three separate SFP ports.

The register definitions for each FB are defined in a

block.ini file. This file specifies the field-type for each

register, for example, param for constants, pos_mux and

bit_mux for multiplexing signals on the pos and bit bus

respectively, and pos_out and bit_out for appending outputs

to the buses. It also specifies additional information that

needs to be conveyed to the build system, such as IP that

needs to be included in the build, and additional constraints

that need to be read. The block.ini files from the ’carrier’

and ’soft’ blocks are input to ’generate_app.py’, where they

are parsed and used alongside the templates to produce

the generated HDL and tcl files. The generated files are

then combined with the carrier HDL and tcl files, as well
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Figure 5: Example of web-GUI for a snake scan.

Figure 6: Flow diagram for auto-generated build processes.

the module HDL files, to produce the FPGA configuration

package.

Therefore in order to add a new functional block, a user

would need to write their functional HDL code, define the

registers they require in a block.ini file, and add the required

number of instances of the block to the app.ini file. This is

a substantial improvement over the previous method, which

required the creation of at least three HDL files for each new

block, as well as manual editing of several other files.

ADDITIONAL HARDWARE TARGETS

ZedBoard Demonstration

In order to demonstrate the porting of PandABlocks to a

different SoC device, a demonstration was made using the

Digilent ZedBoard development platform, Fig. 7 [11]. The

ZedBoard featues a Zynq-7020 SoC with Artix-7 equivalent

PL fabric, with various peripherals such as an OLED display,

user programmable switches and LEDs, an LPC-FMC

connector, and several PMOD header for general purpose

I/O.

In order to demonstrate the interaction of PandABlocks

with the ZedBoard hardware a simple functional block was

Figure 7: ZedBoard running PandABlock demo app.

created which allows the user to read the state of the eight

switches, display a value on the eight LEDs, and choose

between different text fields to be displayed on the OLED.

Being a smaller and slower FPGA than that on the PicoZed,

it was not possible to achieve timing closure with the full

complement of PandA blocks, so only a small subset of

the soft blocks were included in this demo app. Other

differences between the ZedBoard and PicoZed included

details of the memory and USB chips; the former required

changes to both the devicetree and to the uboot configuration.

The steps necessary to port PandABlocks from the

PicoZed to the ZedBoard were the following: generating a

new Zynq PS block design in Vivado IP Integrator for the

Zynq-7020; generating the FSBL; editing of the devicetree

to account for component differences; and creating a new

target.ini to define the hardware blocks available to the

system. A new app.ini was also created to specify the soft

blocks to include in the design and to specify the ZedBoard

target.

SOLEIL UFX Detector Application

Another example of the PandABlock framework being

employed on other target hardware is in the DAQBox for the

control and readout from a UFXC32k hybrid pixel detector,

developed at SOLEIL [12]· This is also based around a
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PicoZed-7030 SoM, coupled to a custom carrier board,

Fig. 8. The carrier is essentially a compact version of the

PandA carrier, with 3 SFP ports and one FMC connector, but

without features such as encoder inputs, LVDS I/O, or Slow

FPGA. A custom FMC module was developed to interface

to the detector board via high speed cables, and image data

is streamed from the three SFP ports to a server via UDP/IP

on point-to-point links.

Figure 8: DAQBox carrier board with PicoZed SoM and

custom FMC module.

The PandABlocks framework is used with custom SFP

and FMC blocks, to provide a register interface to TANGO

via TCP. As the carrier board is designed around the PicoZed

SoM, no hardware related changes were needed to the Zynq

PS configuration. Alongside the addition of the user-defined

logic for the SFP and FMB blocks, the necessary changes to

the framework for this target consisted of creating a target.ini

file specifying the hardware blocks available on the carrier,

and an associated app.ini file. A minor modification was

necessary to the TCP server code for programming the

FPGAs, to account for the removal of the Slow FPGA on

the carrier.

CONCLUSION

PandABlocks is a versatile framework for Zynq-based

systems, based on the modular blocks offering on-the-fly

configuration and wireability. Developed for the PandABox

hardware for advanced beamline scanning applications, it is

being used being on several beamlines at DLS and SOLEIL.

Recent changes to the framework have been made to facilitate

the addition of new functional blocks to a design, as well as

to target additional hardware platforms.
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