
AUTOMATIC WEB APPLICATION GENERATION FROM AN
IRRADIATION EXPERIMENT DATA MANAGEMENT ONTOLOGY

(IEDM)∗

B. Gkotse†,1,2, P. Jouvelot1, F. Ravotti2
1CERN, Geneva, Switzerland

2MINES ParisTech, PSL University, Paris, France

Abstract
Detectors and electronic components in High-Energy

Physics experiments are nowadays often exposed to harsh ra-
diation environments. Thus, to insure reliable operation over
time, their radiation tolerance must be assessed beforehand
through dedicated testing experiments in irradiation facili-
ties. To prevent data loss and perform accurate experiments,
these facilities need to rely upon a proper data management
system.

In prior work, we provided a formal description of the key
concepts involved in the data management of irradiation ex-
periments using an ontology (IEDM). In this work, we show
how this formalisation effort has a practical by-product via
the introduction of an ontology-based methodology for the
automatic generation of web applications, using IEDM as a
use case. Moreover, we also compare this IEDM-generated
web application to the IRRAD Data Manager (IDM), the
manually developed web application used for the data han-
dling of the CERN Proton Irradiation facility (IRRAD). Our
approach should allow irradiation facility teams to gain ac-
cess to state-of-the-art data management tools without in-
curring significant software development effort.

INTRODUCTION
Ontologies have been used in Artificial Intelligence (AI)

for years for various purposes such as knowledge formalisa-
tion, interoperability, complex querying and inference [1].
Nowadays, some companies choose to base their informa-
tion systems on ontologies [2] and knowledge graphs [3],
the descendants of ontologies, in order to allow for better
data integration and communication. Ontologies have been
shown to be suitable for domain-specific knowledge formal-
isation, and are broadly used in various domains such as
biomedicine [4], bioinformatics [5] and law [6]. In addition
to formalisation, ontologies can have many practical appli-
cations, which were not explored deeply so far. We focus
here on one particular application, namely the management
of ontology-related data.

Data management is an important issue in several scien-
tific domains [7], and in the High-Energy Physics (HEP) as
well. This is true when running physics experiments at the
CERN Large Hadron Collider (LHC) or similar accelerator

∗ This work has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement no. 654168
(AIDA-2020).

† Blerina.Gkotse@cern.ch

infrastructures, but also at earlier stages, during their devel-
opment. Detectors and electronic components used in HEP
experiments are often exposed to harsh radiation environ-
ments. Thus, to insure reliable operations over time, their
radiation hardness must be assessed beforehand through ded-
icated testing experiments in irradiation facilities. To prevent
data loss and perform accurate experiments, these facilities
need also to rely upon a proper data management system.

In our previous work [8], we introduced the domain ontol-
ogy for Irradiation Experiment Data Management (IEDM),
which formalises the concepts involved in irradiation testing
experiments. In this paper, we introduce both a new method-
ology for generating automatically web applications from
domain ontologies and our ontology-driven, data manage-
ment web application generator (GenAppi). In this way, we
enable non-computer scientists to easily build and deploy
such applications. We use IEDM as a representative example
to illustrate our approach.

An interesting by-product of our proposal is that GenAppi-
generated web applications end up being actually enriched
beyond their initial intended goal by the presence of a new
underlying ontology, the Ontology-based Web Application
Ontology (OWAO), and other web semantic technologies.
More specifically, these generated web applications can rely
upon well-established open standards, while user data are not
only stored in private databases but also as interconnected
knowledge graphs. This opens opportunities for both devel-
opers and domain experts, for instance in terms of inference
or coherence checking.

The structure of the paper is as follows. In the second
section, we provide some background information about
ontologies, describe relevant user-interface ontologies and
discuss related work about ontology-based user interface
generation. In the third section, our new methodology is de-
scribed, focusing on the OWAO ontology designed to enable
the description of the concepts and axioms integrated in our
web application generator (GenAppi). In the fourth section,
we present the IEDM ontology, used as an example ontology
to demonstrate the functionalities and User Interface (UI)
features of automatically generated web applications. In the
fifth section, we compare the IEDM-derived web applica-
tion to the IRRAD Data Manager (IDM), a custom-made
web application currently used in the CERN proton irradia-
tion facility (IRRAD)1 [9]. Finally, in the sixth section, we
conclude our work and present our ideas regarding possible

1 http://cern.ch/ps-irrad

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

Data Management
TUBPL01

687

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



extensions of the GenAppi-derived functionalities, including
UI customisation, as future work.

STATE OF THE ART
This section describes briefly what ontologies are and

how they are defined, present examples of UI ontologies and
discuss related work about ontology-based UI generation.

Ontologies
The term "Ontology" derives from the ancient Greek

words în (on), the present participle of the verb "to be",
and lìgos (logos), which stands for (one) who speaks (in
a certain way), or (one) who treats of (a certain subject).
Initially, the term was used in philosophy when referring to
the subject of existence [2], the science of being, and, more
simply, to "what exists" in the world [10]. As in philosophy,
also in computer science ontologies are used for the formal
description and classification of "what exists". However, in
computer science, "what exists" is what can be explicitly
represented as knowledge. Therefore, an ontology is an ex-
plicit specification of a conceptualisation [11], a model that
defines concepts and relations among them for representing
an area of knowledge or domain. In detail, an ontology is a
set of domain-specific definitions and descriptions specified
using the following concepts:

• class, i.e., an entity of the domain;
• property, i.e., an attribute, of specific type (e.g., string,

integer, etc.), that helps to describe a class – such an
attribute is also called a data property;

• relation, i.e., a link between two or more classes in
order to describe a semantic relation among them – a
relation is often called an object property, as well.

The primary purpose of defining and using an ontology is
to reach a common understanding of the structure of a spe-
cific information among people or software agents. In prac-
tice, ontologies are thus used for sharing domain information
and to foster interoperability. Furthermore, ontologies con-
tribute in analysing and reusing domain knowledge [12].

An ontology can be represented by a graph-like or only
tree-like structure where the nodes are the classes and the
edges are the relations2. Once an ontology is defined, in-
stances of these classes can be created and linked together
with the purpose of representing or annotating datasets and
resources. Nowadays, an ontology is considered to be the
sole schema describing the interrelations and restrictions of
resources whereas the whole set of schema and instances is
referred to as a knowledge base (KB) or knowledge graph
(KG) [3], term coined by Google [13].

Ontologies and KGs can be specified by languages ded-
icated to ontology description; each has its own structure
and syntax. The languages that have prevailed nowadays
because of their simplicity and expressiveness are the Re-
source Description Framework (RDF) [14], the Resource

2 In the case of a tree, the ontology is actually a taxonomy, since classes
are only organised in a hierarchical manner, representing a specific clas-
sification and inheritance.

Description Framework Schema (RDFS) [15] and the Web
Ontology Language (OWL) [16]. These standards are used
in this work.

UI Ontologies
The formalisation and standardisation of knowledge that

ontologies provide can be used for the description of the
UI components that form the fabrics of the vast majority of
computer software. In the literature, there have been sev-
eral attempts to describe at least part of this type of knowl-
edge [17–19]; UI ontologies have been developed to fulfil
specific requirements and describe certain parts of a UI or
web application. For example, the Semantic UI ontology
includes concepts related to the interface elements of its own
UI framework, Semantic UI [17]. Even though this ontology
seems suitable for our work, it does not include concepts
related to the visualisation of the elements (e.g., font size),
since Semantic UI has specific predefined themes that are
customizable only at compile time.

Concepts such as font size are, however, included in the UI
ontology of [18] supported by the community behind Linked
Open Vocabularies (LOV) [20]. This ontology describes
concepts of UI elements, relates these entities to properties
of style (e.g., colour or background colour) and is suitable
for describing forms and sequences in widgets.

Yet, both ontologies describe only the graphical front-end
part of a user interface, and they do not address concepts
related to actual data operations. Such an issue is treated
by the RDFa3 User Interface Language (RaUL) [19], a user
interface ontology used for the description and structure of
web forms as RDF statements that introduces concepts such
as CRUDOperation about specific operations (Create, Read,
Update and Delete, thus CRUD).

Ontology-based UI Generation
The idea of automatically generating UIs based on on-

tologies has been envisioned before. One example is the
work about ontology-based UI development where a User
Interface Ontology (UIO) is used to describe UI properties
and their semantic relationships [21]. By the use of UIO and
a VCards4 domain ontology, mappings between these two
ontologies are created and used to instantiate a user interface.
Even though this idea is similar to our work, it does not get
up to the point of automatically generating user interfaces,
as we do. Moreover, UIO is neither properly documented
nor publicly available, and therefore this work is not readily
reusable.

Another example, where an ontology of user interfaces
is used, is of Hierarchical User Interface Component Archi-
tecture (HUICA) [22]. This ontology describes the whole
process of user-interface development from the wireframes
to a Model-View-Controller (MVC) architecture for UI inter-
active components. This ontology is divided in three parts:

3 RDFa provides ways to add metadata annotations to Web documents.
4 VCards is a file format for electronic business cards.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

TUBPL01
688

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



Figure 1: OWAO excerpt.

the design part, where concepts such as wireframes are de-
scribed; the UI part, where UI elements such as widgets or
composites are included; and the last part, used for an MVC
architecture. Since the main focus of this work is the HUICA
architecture, the author provides only a visual schema of this
ontology without providing the ontology in a language for-
mat (e.g., RDF). Moreover, the MVC architecture is used
only in the front end for UI interactive components, which
is a domain where several software tools exist and is not the
focus of our work.

In the work of Mahmudi et al. [23], ontologies are trans-
formed into relational databases based on specific rules that
can then be used for the development of a web application.
However, a final operational web application is not presented.
Another related work about ontology-based UI generation
is the work of Hitz et al. [24]. In their paper, users must
provide input to an Application Ontology that is transformed
into a Target Ontology used for UI generation. Neverthe-
less, some proprietary annotations are required, adding some
limitations to its universality.

METHODOLOGY
Inspired by the existing UI ontologies and the related work

on ontology-based UI generation, in our work we first in-
troduce OWAO, the new Ontology-based Web Application
Ontology, which describes concepts, operations and axioms
related to the generation of web applications via data extrac-
tion from a domain ontology. These concepts are integrated
in our web application generator GenAppi, which can be
used to create a Django web application specific to any user-

provided domain ontology [25]. General additional web
semantic services are also presented.

Ontology-based Web Application Ontology
(OWAO)

OWAO can be seen as a meta-ontology that builds upon
a set of (meta-)concepts to describe all entities present in
any domain ontology, together with those needed to auto-
matically manage the user interface of ontology instances.
Specifically, as shown in Fig. 1, a Domain Ontology (Do-
mainOntology) is composed of the classes DomainClass,
DomainDataProperty and DomainObjectProperty concepts.
These domain concepts are then mapped to the OWAO con-
cepts that describe any Django web application, thus opening
the door to the ultimate management of all the data belonging
to the domain ontology.

Django web applications follow a Model-View-Template
(MVT) architecture. The Model layer defines the domain
data structure describing the tables and fields of the under-
lying database storing the application data. The View layer
defines the processes used for retrieving, formatting or sav-
ing the data to the database defined in the Model layer. The
Templates are used to render the information to the client.
In order to generate a domain-specific web application, the
concepts of the domain ontology have to be mapped to the
corresponding concepts of the MVT architecture, which will
enable the automatic generation of the MVT-compliant doc-
uments (instances of WebApplicationDocument) for the web
application.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

Data Management
TUBPL01

689

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



The domain concepts must be mapped to the web appli-
cation related concepts (DomainModelClass, DomainMod-
elAttribute and DomainModelRelation) of the Django web
application model. These mappings are used for the genera-
tion of the Model of the web application (see the GenAppi
subsection for more details). Then, for each DomainMod-
elClass, the UI Operations such as Create, Read, Update,
Delete or List that are to be supported must be specified. In
the generated web application, this means that appropriate
WebApplicationDocuments will be available to the user, for
example View documents implementing the functionalities
of each Operation, and this for each DomainModelClass.
At the front-end level, every Operation is represented by a
specific UI fragment UIFragment, e.g., Form or Table.

Web Application Generator (GenAppi)
Exploiting state-of-the-art technologies for ontologies and

web applications such as Django [25], Jinja2 [26] or Owl-
ready2 [27], the GenAppi software tool follows a specific
workflow for the generation of OWAO-based web applica-
tions. The main steps are displayed in Fig. 2 and described
here.

Figure 2: GenAppi generator workflow.

Loading Ontologies Owlready2 [27] is the module that
GenAppi uses for handling ontologies within Python; it
enables existing ontologies to be represented as Python data
structures, opening the way to their dynamic management
via Python at run time. Since the Django framework is
based on Python, the Owlready2 module is simply imported
in GenAppi. When GenAppi is started, the domain and
OWAO ontologies are loaded into GenAppi via Owlready2
in order to extract the necessary information.

Domain Ontology to Model Mapping Following the
user-provided OWAO mappings, the domain ontology
classes (DomainClass) are transformed to Python classes
(DomainModelClass) used to create the Model of the Django
web application. Data properties (DomainDataProperty) are
transformed to attributes (DomainModelAttribute) and their
datatypes are transformed to the equivalent datatype in the
model, e.g., xsd:string to TextField. Object properties (Do-
mainObjectProperty) are mapped to relations (DomainMod-
elRelation) of the Model. Their cardinality (RelationCardi-
nality) describes the Django relationship (e.g., ForeignKey
or ManyToMany). For example, the OWL triple Irradiation-
Experiment createdBy exactly 1 User is transformed to the
field createdBy = ForeignKey("User") in the Python class
corresponding to the IrradiationExperiment domain class.

Operation Handling As displayed in Fig. 1, certain
UI operations such as Create or Update can be associated
to Model classes (DomainModelClass). For each of these
operations, GenAppi provides a corresponding Jinja2 [26]
template that includes the code implementation of the op-
eration, independently of the Model. GenAppi uses these
templates to generate View Python documents, used for the
execution of the operations for each class.

Creating Templates and URLs Jinja2 templates are
also used to generate Django templates. These Django tem-
plates are needed to provide the UI presentation logic of the
generated web application, rendering and presenting data to
the users. A unique URL is associated of each template and
acts as a link to the corresponding View document.

Web Application Packaging After the generation of
all the previously mentioned files, GenAppi assembles them
in specific directories. Moreover, the OWAO and domain
ontologies are copied in the web application, allowing for
easier accessibility and portability, while making it possible
to create future instances of the domain ontology through
the web application.

Migration and Server Settings The last step of
GenAppi is to handle the model migration to a dedicated
database. The default database managed by Django is
SQLite3, but this can be changed easily in the settings. After
the migration, a web server is also started and the web appli-
cation is finally ready for use. From that point, instances of
the user-specific domain classes can be generated and man-
aged via the UI client automatically generated by GenAppi,
in compliance with OWAO-specified requirements.

Additional Services
In addition to the generation of a proper UI for the han-

dling of ontology-linked data, useful additional features have
been introduced within our framework.

Authentication and Authorisation The Django frame-
work provides an integrated authentication and authorisation

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

TUBPL01
690

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



system. In order to use these functionalities, specific Jinja2
templates were created to generate the user interfaces that
allow users to register and sign into the web application.

Ontology Visualisation WebVOWL is a software tool
that allows for the easy visualisation and editing of ontolo-
gies [28]. WebVOWL is integrated in our framework and
customised to fit the configurations of a Django applica-
tion. This allows for an easy graph-like visualisation of the
domain ontology used in the generated application.

UI Preferences In the generated web application, users
can adapt the display view of the user interfaces. For ex-
ample, they can change the font size or background colour.
This is implemented for better user experience.

THE IEDM ONTOLOGY USE CASE

Figure 3: IEDM core classes.

For the purpose of testing our automatic web application
generation methodology, the Irradiation Experiment Data
Management ontology (IEDM) was used as a domain on-
tology. As shown in Fig. 3, the IEDM ontology formalises
concepts of irradiation experiments focusing on the manage-
ment of the data involved in them. IEDM was developed by
investigating and analysing the common elements and prac-
tices used in typical irradiation experiments and by the help
of domain experts. IEDM contains also instances describ-
ing the specific use case of an actual irradiation experiment
performed at the CERN proton irradiation facility (IRRAD)
[8].

When IEDM is used as an input to GenAppi, its classes
and object and data properties are transformed into the
Django model of an IEDM-specific web application. This
model is mapped by default to a SQLite3 database. Views,
templates and URLs of the MVT architecture are generated
and implement the operations for each class of the ontology.
In Fig. 4 and Fig. 5 at the bottom, some screenshots of the
generated user interfaces are presented. Note that instances
of IEDM classes can be also saved directly in the ontology
(or in a triple store, in order to make the storage and querying
of large amount of data more efficient).

As described in the previous paragraphs, the key UI oper-
ations are defined in OWAO, and the relevant functions for
the model classes are generated by GenAppi. In Fig. 4, one
specific example of a Create user instance operation form
is demonstrated, where OWL superclasses in the form of

triples corresponding to object or data properties are trans-
formed into the input fields of a form adequate for creating
the corresponding class instances. If this data property were
instead an object property, the GenAppi-generated applica-
tion would add a foreign key to the instance. In addition,
if there are no instances of the class referred to, the user is
prompted by the application to first add an instance of the
class to which the foreign key is associated.

Figure 4: “Create user instance” form of IDM, at the top;
generated web application version, at the bottom.

COMPARISON WITH THE IRRAD DATA
MANAGER (IDM)

Currently, in the IRRAD facility, a custom-made Django
web application is used for the data management of irradia-
tion experiments, the IRRAD Data Manager (IDM). IDM
follows the concepts of the IEDM ontology, but it has been
manually developed and fulfils the specific requirements
for the IRRAD experiments. IDM is used by both the IR-
RAD coordinator, operators and users for the registration
of data. It provides specific functionalities dedicated to the
planning of the irradiation experiments and their follow up.
The results of the experiments are also available via this
tool, which communicates with external systems. Finally,
it keeps a history of the performed experiments and of the
components that were irradiated [29].

IDM was developed for the same purpose as the GenAppi-
generated web application presented above, namely the man-
agement of irradiation experiments data. However, IDM
may not be suitable for other facilities, because it strictly fol-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

Data Management
TUBPL01

691

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: List user interface of IDM at the top, generated web application at the bottom.

lows the operational requirements as specified by the IRRAD
management.

But, more importantly, the technologies IDM is based
on are strongly linked to the CERN software infrastructure.
First, the Django model of IDM is based on the Oracle rela-
tional database, which may not be available in other facilities.
In GenAppi, the user can specify the database that the web
application should use. Moreover, it is not built based on
semantic technologies as GenAppi, which allow for easier
knowledge sharing and interoperability. These web seman-
tic technologies facilitate complex querying, reasoning and
inference. In addition to that, saving instances directly in
the ontology or in a triple store is also possible.

As shown in Fig. 4 and Fig. 5, there is a resemblance
among the UIs of the IDM and the generated web application.
Regarding the additional services provided by both systems,
note that the IDM authentication service is the CERN Single
Sign On (SSO) system, while the generated application relies
upon the default Django authenticating system. Also, IDM
implements additional and complex functionalities that need
to be defined by the developer. For instance, it integrates
formulas to compute physics-related values that cannot be
easily defined in an ontology. Nevertheless, the generated
web application can be considered as a backbone for further
implementation and functionality customisation according
to the needs of the domain as done with other commercial
software tools (e.g., SIMATIC WinCC [30])

CONCLUSION AND FUTURE WORK
In this paper, we introduce a methodology for the auto-

matic generation of Django web applications from domain
ontologies. For this purpose, the new Ontology-based Web
Application Ontology (OWAO) is defined for formalising the
concepts of the methodology; its instances describe the ex-
pected UI properties of the web application to be generated
from a domain ontology. An OWAO-based web application
generator, GenAppi, is described, and an example based
on the Irradiation Experiment Data Management (IEDM)
domain ontology is provided to illustrate the web application
interfaces that are automatically generated. Finally, we com-
pare this generated web application with the IRRAD Data
Manager (IDM), the custom-made web application used in
the IRRAD proton irradiation facility at CERN.

Our work illustrates that our ontology-based generated
web application implements core functionalities similar to
IDM’s, but that it can be more easily adapted to other irradi-
ation facility requirements, while relying on web semantic
technologies that enhance knowledge sharing, data interop-
erability and inference.

The generated web application is simpler than IDM and
does not yet implement its most complex functionalities.
However, it is more flexible and adaptable to other use cases.
Moreover, even though GenAppi-generated UIs allow for
some level of customisation, they still need to provide more
degrees of freedom for the users. Therefore, more focus

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

TUBPL01
692

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



will be given in the future to UI customisation, so that the
generated applications are more adaptable and offer different
“look and feel”, thus better fitting the user preferences.

REFERENCES
[1] N. Noy, “Semantic Integration: A Survey Of Ontology-Based

Approaches”, SIGMOD Record, vol. 33, pp. 65-70, Dec. 2004.
https://doi.org/10.1145/1041410.1041421

[2] B. Smith, “Ontology”, Blackwell Guide to the Philosophy
of Computing and Information, Blackwell, Oxford, 2004,
pp. 155–166, https://doi.org/10.1002/9780470757017.
ch11

[3] H. Paulheim, “Knowledge graph refinement: A survey of
approaches and evaluation methods”, Semantic Web, vol.8,
no. 3, pp. 489–508, 2017.

[4] B. Smith,et al., “The OBO Foundry: coordinated evolution
of ontologies to support biomedical data integration”, Nat
Biotechnol., vol.25, pp. 1251, 2007, Nov., Nature Publishing
Group. doi:10.1038/nbt1346

[5] The Gene Ontology Consortium and M. Acencio, “The Gene
Ontology Resource: 20 years and still GOing strong”, Nucleic
Acids Research, vol. 47, no. D1, Nov. 2018, pp. D380–D388.
doi:10.1093/nar/gky1055

[6] H. J. Pandit, F. Kaniz, D., O’Sullivan, and D. Lewis,
“GDPRtEXT - GDPR as a Linked Data Resource”, in The
Semantic Web, Jun. 2018, pp. 481–4955, doi:0.1007/
978-3-319-93417-4_31

[7] R. Hernández de Diego,et al., “STATegra EMS: an Experi-
ment Management System for complex next-generation omics
experiments”, BMC Systems Biology, vol.8 (Suppl 2), p. S9,
2014, http://www.biomedcentral.com/1752-0509/8/
S2/S9

[8] B. Gkotse, P. Jouvelot, and F. Ravotti, “IEDM: An Ontology
for Irradiation Experiments Data Management”, presented at
the 16th Extended Semantic Web Conf. (ESWC2019), Por-
toroz, Slovenia, Jun. 2019, to be published.

[9] F. Ravotti, B. Gkotse, M. Moll, and M. Glaser, “IRRAD: The
New 24GeV/c Proton Irradiation Facility at CERN”, in Proc.
AccApp’15, Washington, DC, USA, Nov. 2015, pp. 182–187.
http://accapp15.org/wp-content/data/index.
html

[10] Oxford English Dictionary https://www.oed.com/view/
Entry/131551?redirectedFrom=ontology

[11] T. R. Gruber, “A translation approach to portable ontologies”,
Knowledge Acquisition, vol. 5, no. 2, 1993, pp. 199-220. doi:
10.1006/knac.1993.1008

[12] N. F. Noy and D. L. McGuinness, “Ontology De-
velopment 101: A Guide to Creating Your First
Ontology”, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880. http:
//www-ksl.stanford.edu/people/dlm/papers/
ontology-tutorial-noy-mcguinness-abstract.
html

[13] Google Knowledge Graph, developers.google.com/
knowledge-graph/

[14] Resource Description Framework (RDF), https://www.w3.
org/RDF/

[15] Resource Description Framework Schema (RDFS), https:
//www.w3.org/2001/sw/wiki/RDFS

[16] Web Ontology Language (OWL), https://www.w3.org/
OWL/

[17] Semantic User Interface ontology, https://old.datahub.
io/dataset/ui

[18] LOV User Interface ontology, https://lov.linkeddata.
es/dataset/lov/vocabs/ui

[19] A. Haller,J. Umbrich, and M. Hausenblas,“RaUL: RDFa User
Interface Language – A Data Processing Model for Web Ap-
plications”, in Proc. WISE 2010, Hong Kong, China, Dec. 12-
14, 2010, pp. 12–14. doi:10.1007/978-3-642-17616-6_36

[20] Linked Open Vocabularies (LOV), https://lov.
linkeddata.es/dataset/lov

[21] S. K. Shahzad, “Ontology-based User Interface Develop-
ment:User Experience Elements Pattern”, Journal of Univer-
sal Computer Science, vol.17 , no. 7, pp. 1078–1088, 2011.

[22] R. S. Engelschall, "Hierarchical User Interface Component
Architecture", Ph.D. thesis, Inf. Univ., Augsburg University,
Augsburg, Germany, 2018.

[23] K. Mahmudi,et al., “Ontology to relational database transfor-
mation for web application development and maintenance”,
J. Phys.: Conf. Ser., vol. 971, p. 012031, 2018.

[24] M. Hitz, T. Kessel and D. Pfisterer, "Towards Sharable Ap-
plication Ontologies for the Automatic Generation of UIs
for Dialog based Linked Data Applications" in Proc. 5th Int.
Conf. on Model-Driven Engineering and Software Develop-
ment (MODELSWARD 2017), Porto, Portugal , Feb. 2017.
pp. 567–569. doi:10.5220/0006137600650077

[25] Django framework, https://www.djangoproject.com

[26] Jinja2, https://jinja.palletsprojects.com

[27] JB Lamy, “ Owlready: Ontology-oriented programming in
Python with automatic classification and high level con-
structs for biomedical ontologies”, Artificial Intelligence In
Medicine, vol. 80C, pp. 11-28, 2017.

[28] V. Wiens, S. Lohmann, and S. Auer, “WebVOWL Editor:
Device-Independent Visual Ontology Modeling”, in Proc.
17th Int. Semnatic Web Conference (ISWC 2018), CEUR
Workshop Proceedings, 2180, CEUR-WS.org, 2018.

[29] B. Gkotse, P. Jouvelot, G. Pezullo, and F. Ravotti, “The IR-
RAD Data Manager (IDM)”, presented at ICALEPCS’2019,
New York, USA, Oct. 2019, paper MOPHA048, this confer-
ence.

[30] SIMATIC WinCC, https://new.siemens.com/global/
en/products/automation/industry-software/
automation-software/scada.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL01

Data Management
TUBPL01

693

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


