
PUBLIC CLOUD-BASED REMOTE ACCESS INFRASTRUCTURE FOR
NEUTRON SCATTERING EXPERIMENTS AT MLF, J-PARC

K. Moriyama, Comprehenshive Research Organization for Science and Society (CROSS),
Tokai, Ibaraki, Japan

T. Nakatani, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan

Abstract
An infrastructure for remote access for supporting re-

search workflow is essential for neutron scattering user fa-
cilities such as J-PARC MLF. Because the experimental pe-
riod spans day and night, service monitoring the measure-
ment status from outside the facility is required. Addition-
ally, convenient way to bring a large amount of data back
to user’s home institution and to analyse it after experi-
ments is required. To meet these requirements, we are de-
veloping a remote access infrastructure as a front-end for
facility users based on public clouds. Recently, public
clouds such as Amazon AWS and Google Cloud, have been
rapidly developed, so that development and operation
schemes of computer systems have changed dramatically.
Various architectures provided by public clouds enable ad-
vanced systems to develop quickly and effectively. Our
cloud-based infrastructure comprises services for experi-
mental monitoring, data distribution and data analysis, us-
ing architectures such as object storage, event-driven serv-
erless computing, and virtual desktop infrastructure (VDI)
based on a microservice approach for application imple-
mentation. Facility users can access this infrastructure us-
ing just a web browser and VDI client. This paper reports
the current status of this remote access infrastructure.

INTRODUCTION
The Materials and Life Science Experimental Facility

(MLF) at the Japan Proton Accelerator Research Complex
(J-PARC) is a neutron scattering experiment user facility
with one of the world’s highest intensity pulsed neutron
beams in operation since 2008. Currently, the 21 installed
neutron instruments are used by domestic and international
users, in various research fields to conduct experiments.

Many of the instruments at MLF have introduced
IROHA2 [1], which is a web-based integrated instrument
control framework that controls data acquisition and sam-
ple environmental devices. IROHA2 is able to perform au-
tomatic measurement changing measurement conditions.
Using this function, long-running measurement over peri-
ods of several days can be performed. Therefore, the pro-
gress of measurement can be monitored remotely via the
web. However, due to security issues and system capabili-
ties, currently, only instrument staff are allowed to monitor
the measurement status in this way.

With intense neutron beams, high-precision and -resolu-
tion position-sensitive detectors are used with advanced
event recording methods for data acquisition; experimental

data is generated at very high rates [2]. The total amount of
data generated in experiment ranges from hundreds of MB
to several TB per experiment.

These data are analysed using Linux-based analysis soft-
ware. After each experiment, most beamline users would
normally take their data back to their home institutions in
the portable storage such as hard disks. Since many facility
users are unfamiliar with the Linux environment, virtual
machines with analysis software installed are distributed to
them.

Given this facility usage, to support research workflows
of facility users, the remote access infrastructure require-
ments are:

• The ability to remotely monitor the progress of long-
running measurements over the experiments

• To remove the necessity for users to physically take
large amounts of raw data back to their home institu-
tions, by allowing data analysis and results acquisition
to be performed by one-stop, remote access.

• To allow multiple facility users quick and easy remote
access from both inside and outside the country.

To satisfy these requirements, we built a remote-access
infrastructure linked to the on-site systems at MLF using
the Amazon Web Services (AWS) [2], one of the main pub-
lic clouds. Figure 1 shows an overview of our remote ac-
cess.

WHY USE A PUBLIC CLOUD?
The reality of system and infrastructure development has

various limitations such as budget, human resources, and
security. Given these limitations, using a public cloud as a
development platform has the following advantages com-
pared to conventional on-site systems and private clouds:

• No hardware management or installation costs are re-
quired.

• System development and operations can start small
and can be scaled as need. This can optimize resource
usage and thus, operating costs as well.

• Advanced services and functions provided via public
clouds enable efficient system development; in partic-
ular, a proactive use of advanced AI-related services
can be expected.

• The security of the service infrastructure is ensured at
a higher level than that of on-premises systems.

• A managed service that simplifies system manage-
ment and operation.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

Data Management
TUBPL04

707

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: The overview of remote-access infrastructure.

• The global presence of a public cloud allows facility
users access with low latency, whether domestic or
foreign.

MLF has been in operation over a decade, seeing the
budget for the development of new systems reduce as
maintenance and upgrade costs for existing systems in-
crease. Therefore, a public cloud, allowing development
and operation of more advanced and challenging systems
while reducing costs, is quite a useful infrastructure plat-
form for facilities such as MLF

DEVELOPMENT APPROACH
In public clouds, a wide range of services is provided,

from a physical level to software. Selecting the appropriate
service to use, from these, is important from the view point
of system development and operation.
Selection Policy of Cloud Service

Figure 2 shows the hierarchical structure of services de-
scribed in “as a Service” (XaaS) format, based on a cloud
computing service model. The letter “X” represents the
consistent parts: Infrastructure, Platform, Container, Desk-
top, Function, and Software. The following corresponding
services are provided:

IaaS is the service located at the bottom of the hierar-
chy and provides the most basic services such as virtual
machines, virtual networks, and storage, in the use of pub-
lic clouds.

PaaS is the service that provides development plat-
forms including OS and middleware such as RDBMS.

CaaS provides a service for the orchestration of con-
tainers such as Docker [3], which is one of the virtualiza-
tion architectures running applications independently on a
host OS.

DaaS provides a desktop infrastructure based on VDI.
In DaaS, the same desktop environment can be used re-
gardless of client environment and location.

FaaS is a relatively new service that has attracted at-
tention recently. It provides an execution environment for
functions, called serverless computing. FaaS enables ex-
tremely rapid application implementation without the need
to build extra infrastructure.

SaaS provides software-layer services that do not re-
quire server management, such as web mail, blog services
and groupware.

As shown by the arrows in Fig. 2, the costs for develop-
ment and operation as well as the flexibility in develop-
ment are related to the position of the service within the
hierarchy. In terms of operation cost, the infrastructures of
the layers below a service in use are managed by the cloud
vendor, so the cost decrease as higher-layer services are
used. With regard to service usage fee, for example, virtual
machines and containers, in the lower layers, are charged
for continuous operation times, while serverless computing
in the FaaS layer is charged only for function execution
time, so the latter can be used at lower cost.

Figure 2: Hierarchical structure of cloud computing service
model.

In terms of development cost and flexibility, develop-
ment becomes easier and costs are reduced as higher-layer
services are used; however, since functions and computing
resources are locked into a service, the flexibility is re-
duced at higher layers.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

TUBPL04
708

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

Therefore, the adopted optimum service, while meeting
the requirements, should take into account the trade-off be-
tween development flexibility and cost.

Microservice Approach in Cloud Development
As described in the previous section, services of various

layers are available in public clouds. To develop the re-
mote-access infrastructure, we used these services to adopt
a microservice approach, which has attracted attention as
an architecture for application development.

The simplest approach for application implementation is
to run conventional monolithic applications on the virtual
machine provided in IaaS. In contrast, microservices divide
functions into multiple independent small services that
communicate with each other, using well-defined API, and
build applications by collaboration. Using this approach to
public clouds, applications are implemented based on con-
tainer architecture in CaaS and serverless computing in
FaaS.

Figure 3 shows the conceptual configuration of both ap-
proaches. In the monolithic application, various functions
are implemented together so that they are in a tightly cou-
pled relationship each other. In this case, performance deg-
radation due to failure or resource shortage as well as par-
tial function changes, may affect the entire system. There-
fore, it is not easy to modify such a system.

Microservice are designed to overcome the issues of the
monolithic application. Services are independent and
loosely coupled to each other, leading to higher flexibility,
compared with the monolithic application. Each service
can be adopted the optimal language and architectures for
development and can be modified, deployed, and scaled in-
dividually.

Based on this approach, microservices provides highly
independent services, at higher layers such as FaaS and
DaaS, in public clouds. This allows the effective imple-
mentation of applications with high maintainability and
adaptability to future changes.

Figure 3: Monolithic and Microservices applications.

CLOUD SERVICES ON AWS
We adopted AWS as a platform for our remote-access in-

frastructure. It was developed mainly using the services de-
scribed below.

Object Storage：Amazon S3
Amazon Simple Storage Service [4], called Amazon S3

is a highly available (99.99%) and scalable object storage
service, suitable for storing large amounts of data. The-
object storage does not use a hierarchical structure like tra-
ditional file storage but stores data as objects together with
metadata in a flat space called a “bucket.”.” This service
has the following main features:

• A well-defined API for handling data.
• A lifecycle function that automatically deletes or ar-

chives data after a certain period.
• Event notifications for collaborating services.
• Static web hosting.

Serverless Computing：AWS Lambda
AWS Lambda [5] is a key service for building cloud-na-

tive serverless applications and is an event-driven program
execution environment. Applications can be implemented
simply by coding, without building a server. This service
has the following main features:

• Multi-language support: Java, Go, PowerShell,
Node.js, C#, Python, and Ruby.

• Event-driven code execution triggered by collaborat-
ing services.

• A billing method with function execution time.
• Automatic scaling according to the size of the trigger

event.
This service is particularly useful when building micro-
services on a serverless computing basis.

API Proxy：Amazon API Gateway
Amazon API Gateway [6] is another key service for

serverless computing and is useful for implementing mi-
croservices. This service plays an API Proxy by creating an
API layer between front-end and back-end services such as
AWS Lambda, Amazon EC2, and third-party services. The
main features are as follows:

• Fully managed services: API creation, publishing,
maintenance, monitoring and protection.

• REST and WebSocket API.
• HTTP methods: GET, PUT, POST, DELETE, etc.

Content Delivery Network：Amazon CloudFront
Amazon CloudFront [7] is a service for the Content De-

livery Network (CDN) that is a network optimized for de-
livering web content over the internet. Web content is
cached across multiple edge locations, which is the
data center of AWS global network, and user requests are
routed with the lowest latency. Using this service allows
the quick distribution of large amounts of data to
facility users around the world.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

Data Management
TUBPL04

709

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 4: System configuration and processing flow of the experimental monitoring.

Mail Sending：Amazon SES
Amazon Simple Mail Service [8] called Amazon SES is

an email sending service. Equipped with an SMTP inter-
face and an API, it can be integrated with other applications
and services, such as AWS Lambda, to send email.

VDI：Amazon WorkSpaces
Amazon WorkSpaces [9] is a DaaS-type service that pro-

vides a VDI environment in the cloud. This is a fully man-
aged service allowing quick and easy deployment of desk-
top environments without hardware inventory, OS version
patching or complex VDI management. The service has the
following main features:

• Multiple OS deployment: Windows and Amazon
Linux2.

• Multi-device client: Windows, Mac, Chromebooks,
iPad, Fire tablet, and Android tablet.

• Global desktop deployment based on multiple AWS
regions.

This service provides a convenient desktop for data anal-
ysis for facility users, both domestic and overseas.

EXPERIMENTAL MONITORING
Experimental monitoring is particularly useful when per-

forming long-running measurements. It is not practical for
the user to be sat, continuously, in front of the instrument
display during an experiment, so the progress of the meas-
urements would ideally be able to be monitored from out-
side the facility, via the internet.

So far, we have operated on-site systems to monitor ex-
periments from outside the facility, but this provision was
only available to instrument staff. Therefore, we have de-
veloped a new service, allowing facility users to monitor
their experiments remotely by linking the existing on-site
systems with public cloud services. Figure 4 shows the
configuration and processing flow of this system.

Web Distribution of Measurement Status
Procedures 1–3 in Figure 2 are performed to distribute

the measurement status on the web. IROHA2, which is the

experimental management system, has a function to gener-
ate static HTML files, at regular intervals, of the measure-
ment status displayed on the web interface, for monitoring.
The static HTML format is a security measure to prevent
unauthorized control from the outside.

The status collection server periodically collects HTML
files from the neutron instruments and uploads them to the
Amazon S3 bucket. Although Amazon S3 has a function
for static web hosting, it does not support HTTPS commu-
nication and flexible access control. Therefore, web access
is provided through Amazon CloudFront, which is the
CDN service.

When HTML files are uploaded to the S3 bucket, these
files are automatically distributed to the CloudFront edge
location. The communication between Amazon S3 (Origin)
and Amazon CloudFront (CDN) is encrypted by HTTPS.

Access Control with Signed URL
On AWS, the service combination of Amazon S3 and

Amazon CloudFront is commonly used for delivering pri-
vate content. Access control is performed using a Cloud-
Front function called “signed URL.”.” Only those who
have been issued the signed URL can access the Cloud-
Front.

The signed URL is composed of the following elements:
1. Base URL (CloudFront domain)
2. Query strings
3. Policy statement (Base64 encoded)
4. Policy statement (RSA SHA-1 signed)
5. RSA key pair ID
The policy statement includes information such as acces-

sible resources and expiration dates.

Issue of Signed URL
Procedures 4–7 in Figure 4 are performed to issue the

signed URL. The signed URL is generated by a Python
code deployed as a function in Amazon Lambda. This
Lambda function also sends the generated signed URL to
the facility user by email, in cooperation with Amazon
SES.

The Lambda function can be executed on demand
through Amazon API Gateway. Instrument staff submit a
signed URL request using an IROHA2 web interface. Fig-
ure 5 shows a screenshot of this interface. The instrument

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

TUBPL04
710

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

staff issues the signed URL by entering user information
(name, email address) and validity period of URL on this
web interface.

Figure 5: The screenshot of IROHA2 web interface to issue
the signed URL.

Web Access
In procedure 8 in Fig. 4, facility users access the experi-

mental monitoring with a web browser by simply clicking
on the signed URL issued by email. Figure 6 shows a
screenshot of the IROHA2 measurement status.

Figure 6: The screenshot of the IROHA2 measurement
status.

DATA DISTRIBUTION
We have been distributing data generated in experiments

at MLF BL18, which is a beamline for a TOF-Laue neutron
diffractometer [10], using only Amazon S3 since FY2018.
This system used an FTP client to access Amazon S3, but
in order to enable easier data access, we have improved the
system to a web-based service using the same web delivery
and access controls as the experimental monitoring de-
scribed in the previous section. In addition, the system in-
troduced an event-driven serverless computing architecture
linking Amazon S3 and Amazon Lambda. Figure 7 shows
the system configuration and processing flow.

Uploading Data to the S3 Bucket
In the procedure 1 of Figure 7, data uploads from the in-

strument to the S3 bucket are performed on demand by the
MLF Experimental Database (MLF EXP-DB), a web-
based data management system [11]. Data uploaded on the
S3 bucket are automatically encrypted.

HTML Generation with Serverless Computing
In procedures 2–3, using an event-driven serverless

computation of Amazon Lambda, the data list in the S3
bucket is automatically converted into HTML format.

When data is uploaded, Amazon S3 publishes an event,
described in JSON format that contains information about
the uploaded data and directory structure, to Amazon
Lambda. Then, a Lambda function is triggered, written in
Python code, to generate the HTML files in the S3 bucket.

Web Distribution and Access Control
Procedures 4–8 are basically the same as the experi-

mental monitoring, but the signed URL is issued from the
MLF EXP-DB. Figure 8 shows a screenshot of MLF EXP-
DB issuing a signed URL.

Figure 7: System configuration and processing flow of the data distribution.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

Data Management
TUBPL04

711

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 8: The screenshot of MLF EXP-DB web interface
for issuing signed URL.

Data Downloading
In procedure 8, the facility user accesses a web site for

data downloading by clicking the signed URL issued by
email and downloading the data. Figure 9 shows a screen-
shot of the web site called “MLF Data Browser”.

Access for facility users is directed to the lowest latency
edge location by Amazon CloudFront, so they can down-
load large amounts of data at high speeds regardless of the
location they are accessing from.

DATA ANALYSIS
We built a remote desktop environment for data analysis

using Amazon WorkSpaces, which used the DaaS service.
Figure 10 shows the configuration of this system. Facility
users can access the deployed desktop environment by us-
ing a WorkSpaces client. This desktop environment has
analysis software already installed via Amazon Linux2,
which is a RHEL7 compatible OS. User authentication is
performed using a directory service called “Simple AD” of
the Amazon Directory Service. In addition, the desktop en-
vironment is NFS mounted on the Amazon S3 bucket
through Amazon Storage Gateway for using data on the S3
bucket.

Figure 11 shows a screenshot of the desktop environ-
ment installed.

Figure 9: The screenshot of the MLF Data Browser.

STARGazer is a piece of data processing and visualiza-
tion software for single-crystal neutron diffraction experi-
ments in MLF BL18.

This desktop environment allows facility users to per-
form data analysis without installing software or down-
loading data to their PC. It also provides them with the
same interface and online working environment regardless
of their location. Furthermore, the workload of instrument
staff regarding user software installation and support can
be eliminated.

SUMMARY AND FUTURE PLANS
We have developed a remote-access infrastructure for

facility users to perform data downloads and analysis
alongside using the AWS cloud platform, linking the on-
premises system such as IROHA2 and MLF EXP-DB. The
microservice approach was adopted to develop these sys-
tems by utilizing architectures such as serverless compu-
ting, object storage, and a VDI, allowing effective devel-
opment and management.

The developed services are planned to be introduced to
the neutron instrument at MLF, gradually from FY2019. In
addition, other public cloud services such as Google Cloud
Platform and Microsoft Azure also will be introduced as
needed in the future.

Figure 10: System configuration of the remote desktop environment for data analysis.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

TUBPL04
712

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

Figure 11: Linux-based remote desktop for data analysis.

REFERENCES
[1] T. Nakatani et al., “IROHA2: Standard instrument control

software framework in MLF. J-PARC,” in Proc. New
Opportunities for Better User Group Software
NOBUGS2016, Copenhagen, Denmark, 2016, pp. 76-91.

[2] AWS, https://aws.amazon.com/?nc1=h_ls
[3] Docker Platform, https://www.docker.com/
[4] Amazon S3, https://aws.amazon.com/s3/?nc1=h_ls
[5] AWS Lambda,

https://aws.amazon.com/lambda/?nc1=h_ls

[6] Amazon API Gateway, https://aws.amazon.com/api-
gateway/?nc1=h_ls

[7] Amazon CloudFront,
https://aws.amazon.com/cloudfront/?nc1=h_ls

[8] AWS SES, https://aws.amazon.com/ses/?nc1=h_ls
[9] AWS WorkSpaces,

https://aws.amazon.com/workspaces/?nc1=h_ls

[10] T. Ohhara et al., “SENJU: a new time-of-flight single-
crystal diffractometer at J-PARC”, J. Appl. Cryst., vol. 49,
part. 1, p.120, Feb. 2016.
doi:10.1107/S1600576715022943

[11] K. Moriyama and T. Nakatani, “A Data Management
Infrastructure for Neutron Scattering Experiments in J-
PARC/MLF,” in Proc. ICALEPCS'15, Melbourne,
Australia, Oct. 2015, pp. 834-837. doi:10.18429/JACoW-
ICALEPCS2015-WEPGF060

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL04

Data Management
TUBPL04

713

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

