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Abstract 
An infrastructure for remote access for supporting re-

search workflow is essential for neutron scattering user fa-
cilities such as J-PARC MLF. Because the experimental pe-
riod spans day and night, service monitoring the measure-
ment status from outside the facility is required. Addition-
ally, convenient way to bring a large amount of data back 
to user’s home institution and to analyse it after experi-
ments is required. To meet these requirements, we are de-
veloping a remote access infrastructure as a front-end for 
facility users based on public clouds. Recently, public 
clouds such as Amazon AWS and Google Cloud, have been 
rapidly developed, so that development and operation 
schemes of computer systems have changed dramatically. 
Various architectures provided by public clouds enable ad-
vanced systems to develop quickly and effectively. Our 
cloud-based infrastructure comprises services for experi-
mental monitoring, data distribution and data analysis, us-
ing architectures such as object storage, event-driven serv-
erless computing, and virtual desktop infrastructure (VDI) 
based on a microservice approach for application imple-
mentation. Facility users can access this infrastructure us-
ing just a web browser and VDI client. This paper reports 
the current status of this remote access infrastructure. 

INTRODUCTION 
The Materials and Life Science Experimental Facility 

(MLF) at the Japan Proton Accelerator Research Complex 
(J-PARC) is a neutron scattering experiment user facility 
with one of the world’s highest intensity pulsed neutron 
beams in operation since 2008. Currently, the 21 installed 
neutron instruments are used by domestic and international 
users, in various research fields to conduct experiments. 

Many of the instruments at MLF have introduced 
IROHA2 [1], which is a web-based integrated instrument 
control framework that controls data acquisition and sam-
ple environmental devices. IROHA2 is able to perform au-
tomatic measurement changing measurement conditions. 
Using this function, long-running measurement over peri-
ods of several days can be performed. Therefore, the pro-
gress of measurement can be monitored remotely via the 
web. However, due to security issues and system capabili-
ties, currently, only instrument staff are allowed to monitor 
the measurement status in this way. 

With intense neutron beams, high-precision and -resolu-
tion position-sensitive detectors are used with advanced 
event recording methods for data acquisition; experimental 

data is generated at very high rates [2]. The total amount of 
data generated in experiment ranges from hundreds of MB 
to several TB per experiment. 

These data are analysed using Linux-based analysis soft-
ware. After each experiment, most beamline users would 
normally take their data back to their home institutions in 
the portable storage such as hard disks. Since many facility 
users are unfamiliar with the Linux environment, virtual 
machines with analysis software installed are distributed to 
them. 

Given this facility usage, to support research workflows 
of facility users, the remote access infrastructure require-
ments are: 

• The ability to remotely monitor the progress of long-
running measurements over the experiments 

• To remove the necessity for users to physically take 
large amounts of raw data back to their home institu-
tions, by allowing data analysis and results acquisition 
to be performed by one-stop, remote access. 

• To allow multiple facility users quick and easy remote 
access from both inside and outside the country. 

To satisfy these requirements, we built a remote-access 
infrastructure linked to the on-site systems at MLF using 
the Amazon Web Services (AWS) [2], one of the main pub-
lic clouds. Figure 1 shows an overview of our remote ac-
cess. 

WHY USE A PUBLIC CLOUD? 
The reality of system and infrastructure development has 

various limitations such as budget, human resources, and 
security. Given these limitations, using a public cloud as a 
development platform has the following advantages com-
pared to conventional on-site systems and private clouds:  

• No hardware management or installation costs are re-
quired. 

• System development and operations can start small 
and can be scaled as need. This can optimize resource 
usage and thus, operating costs as well. 

• Advanced services and functions provided via public 
clouds enable efficient system development; in partic-
ular, a proactive use of advanced AI-related services 
can be expected. 

• The security of the service infrastructure is ensured at 
a higher level than that of on-premises systems. 

• A managed service that simplifies system manage-
ment and operation. 
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Figure 1: The overview of remote-access infrastructure.

• The global presence of a public cloud allows facility 
users access with low latency, whether domestic or 
foreign. 

MLF has been in operation over a decade, seeing the 
budget for the development of new systems reduce as 
maintenance and upgrade costs for existing systems in-
crease. Therefore, a public cloud, allowing development 
and operation of more advanced and challenging systems 
while reducing costs, is quite a useful infrastructure plat-
form for facilities such as MLF 

DEVELOPMENT APPROACH 
In public clouds, a wide range of services is provided, 

from a physical level to software. Selecting the appropriate 
service to use, from these, is important from the view point 
of system development and operation. 
Selection Policy of Cloud Service 

Figure 2 shows the hierarchical structure of services de-
scribed in “as a Service” (XaaS) format, based on a cloud 
computing service model. The letter “X” represents the 
consistent parts: Infrastructure, Platform, Container, Desk-
top, Function, and Software. The following corresponding 
services are provided: 

IaaS is the service located at the bottom of the hierar-
chy and provides the most basic services such as virtual 
machines, virtual networks, and storage, in the use of pub-
lic clouds. 

PaaS is the service that provides development plat-
forms including OS and middleware such as RDBMS.  

CaaS provides a service for the orchestration of con-
tainers such as Docker [3], which is one of the virtualiza-
tion architectures running applications independently on a 
host OS.  

DaaS provides a desktop infrastructure based on VDI. 
In DaaS, the same desktop environment can be used re-
gardless of client environment and location. 

FaaS  is a relatively new service that has attracted at-
tention recently. It provides an execution environment for 
functions, called serverless computing. FaaS enables ex-
tremely rapid application implementation without the need 
to build extra infrastructure.  

SaaS provides software-layer services that do not re-
quire server management, such as web mail, blog services 
and groupware. 

As shown by the arrows in Fig. 2, the costs for develop-
ment and operation as well as the flexibility in develop-
ment are related to the position of the service within the 
hierarchy. In terms of operation cost, the infrastructures of 
the layers below a service in use are managed by the cloud 
vendor, so the cost decrease as higher-layer services are 
used. With regard to service usage fee, for example, virtual 
machines and containers, in the lower layers, are charged 
for continuous operation times, while serverless computing 
in the FaaS layer is charged only for function execution 
time, so the latter can be used at lower cost. 

 
Figure 2: Hierarchical structure of cloud computing service 
model. 

In terms of development cost and flexibility, develop-
ment becomes easier and costs are reduced as higher-layer 
services are used; however, since functions and computing 
resources are locked into a service, the flexibility is re-
duced at higher layers. 
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Therefore, the adopted optimum service, while meeting 
the requirements, should take into account the trade-off be-
tween development flexibility and cost. 

Microservice Approach in Cloud Development 
As described in the previous section, services of various 

layers are available in public clouds. To develop the re-
mote-access infrastructure, we used these services to adopt 
a microservice approach, which has attracted attention as 
an architecture for application development.  

The simplest approach for application implementation is 
to run conventional monolithic applications on the virtual 
machine provided in IaaS. In contrast, microservices divide 
functions into multiple independent small services that 
communicate with each other, using well-defined API, and 
build applications by collaboration. Using this approach to 
public clouds, applications are implemented based on con-
tainer architecture in CaaS and serverless computing in 
FaaS. 

Figure 3 shows the conceptual configuration of both ap-
proaches. In the monolithic application, various functions 
are implemented together so that they are in a tightly cou-
pled relationship each other. In this case, performance deg-
radation due to failure or resource shortage as well as par-
tial function changes, may affect the entire system. There-
fore, it is not easy to modify such a system.  

Microservice are designed to overcome the issues of the 
monolithic application. Services are independent and 
loosely coupled to each other, leading to higher flexibility, 
compared with the monolithic application. Each service 
can be adopted the optimal language and architectures for 
development and can be modified, deployed, and scaled in-
dividually.  

Based on this approach, microservices provides highly 
independent services, at higher layers such as FaaS and 
DaaS, in public clouds. This allows the effective imple-
mentation of applications with high maintainability and 
adaptability to future changes. 

Figure 3: Monolithic and Microservices applications. 

CLOUD SERVICES ON AWS 
We adopted AWS as a platform for our remote-access in-

frastructure. It was developed mainly using the services de-
scribed below. 

Object Storage：Amazon S3 
Amazon Simple Storage Service [4], called Amazon S3 

is a highly available (99.99%) and scalable object storage 
service, suitable for storing large amounts of data. The-
object storage does not use a hierarchical structure like tra-
ditional file storage but stores data as objects together with 
metadata in a flat space called a “bucket.”.” This service 
has the following main features: 

• A well-defined API for handling data.
• A lifecycle function that automatically deletes or ar-

chives data after a certain period.
• Event notifications for collaborating services.
• Static web hosting.

Serverless Computing：AWS Lambda 
AWS Lambda [5] is a key service for building cloud-na-

tive serverless applications and is an event-driven program 
execution environment. Applications can be implemented 
simply by coding, without building a server. This service 
has the following main features: 

• Multi-language support: Java, Go, PowerShell,
Node.js, C#, Python, and Ruby.

• Event-driven code execution triggered by collaborat-
ing services.

• A billing method with function execution time.
• Automatic scaling according to the size of the trigger

event.
This service is particularly useful when building micro-
services on a serverless computing basis. 

API Proxy：Amazon API Gateway 
Amazon API Gateway [6] is another key service for 

serverless computing and is useful for implementing mi-
croservices. This service plays an API Proxy by creating an 
API layer between front-end and back-end services such as 
AWS Lambda, Amazon EC2, and third-party services. The 
main features are as follows:  

• Fully managed services: API creation, publishing,
maintenance, monitoring and protection.

• REST and WebSocket API.
• HTTP methods: GET, PUT, POST, DELETE, etc.

Content Delivery Network：Amazon CloudFront
Amazon CloudFront [7] is a service for the Content De-

livery Network (CDN) that is a network optimized for de-
livering web content over the internet. Web content is 
cached across multiple edge locations, which is the 
data center of AWS global network, and user requests are 
routed with the lowest latency. Using this service allows 
the quick distribution of large amounts of data to 
facility users around the world. 
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Figure 4: System configuration and processing flow of the experimental monitoring. 

Mail Sending：Amazon SES 
Amazon Simple Mail Service [8] called Amazon SES is 

an email sending service. Equipped with an SMTP inter-
face and an API, it can be integrated with other applications 
and services, such as AWS Lambda, to send email. 

VDI：Amazon WorkSpaces 
Amazon WorkSpaces [9] is a DaaS-type service that pro-

vides a VDI environment in the cloud. This is a fully man-
aged service allowing quick and easy deployment of desk-
top environments without hardware inventory, OS version 
patching or complex VDI management. The service has the 
following main features: 

• Multiple OS deployment: Windows and Amazon 
Linux2. 

• Multi-device client: Windows, Mac, Chromebooks, 
iPad, Fire tablet, and Android tablet. 

• Global desktop deployment based on multiple AWS 
regions. 

This service provides a convenient desktop for data anal-
ysis for facility users, both domestic and overseas. 

EXPERIMENTAL MONITORING 
Experimental monitoring is particularly useful when per-

forming long-running measurements. It is not practical for 
the user to be sat, continuously, in front of the instrument 
display during an experiment, so the progress of the meas-
urements would ideally be able to be monitored from out-
side the facility, via the internet.  

So far, we have operated on-site systems to monitor ex-
periments from outside the facility, but this provision was 
only available to instrument staff. Therefore, we have de-
veloped a new service, allowing facility users to monitor 
their experiments remotely by linking the existing on-site 
systems with public cloud services. Figure 4 shows the 
configuration and processing flow of this system. 

Web Distribution of Measurement Status 
Procedures 1–3 in Figure 2 are performed to distribute 

the measurement status on the web. IROHA2, which is the 

experimental management system, has a function to gener-
ate static HTML files, at regular intervals, of the measure-
ment status displayed on the web interface, for monitoring. 
The static HTML format is a security measure to prevent 
unauthorized control from the outside.  

The status collection server periodically collects HTML 
files from the neutron instruments and uploads them to the 
Amazon S3 bucket. Although Amazon S3 has a function 
for static web hosting, it does not support HTTPS commu-
nication and flexible access control. Therefore, web access 
is provided through Amazon CloudFront, which is the 
CDN service. 

When HTML files are uploaded to the S3 bucket, these 
files are automatically distributed to the CloudFront edge 
location. The communication between Amazon S3 (Origin) 
and Amazon CloudFront (CDN) is encrypted by HTTPS. 

Access Control with Signed URL 
On AWS, the service combination of Amazon S3 and 

Amazon CloudFront is commonly used for delivering pri-
vate content. Access control is performed using a Cloud-
Front function called “signed URL.”.” Only those who 
have been issued the signed URL can access the Cloud-
Front. 

The signed URL is composed of the following elements: 
1. Base URL (CloudFront domain) 
2. Query strings 
3. Policy statement (Base64 encoded) 
4. Policy statement (RSA SHA-1 signed) 
5. RSA key pair ID 
The policy statement includes information such as acces-

sible resources and expiration dates. 

Issue of Signed URL 
Procedures 4–7 in Figure 4 are performed to issue the 

signed URL. The signed URL is generated by a Python 
code deployed as a function in Amazon Lambda. This 
Lambda function also sends the generated signed URL to 
the facility user by email, in cooperation with Amazon 
SES. 

The Lambda function can be executed on demand 
through Amazon API Gateway. Instrument staff submit a 
signed URL request using an IROHA2 web interface. Fig-
ure 5 shows a screenshot of this interface. The instrument 
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staff issues the signed URL by entering user information 
(name, email address) and validity period of URL on this 
web interface. 

Figure 5: The screenshot of IROHA2 web interface to issue 
the signed URL. 

Web Access 
In procedure 8 in Fig. 4, facility users access the experi-

mental monitoring with a web browser by simply clicking 
on the signed URL issued by email. Figure 6 shows a 
screenshot of the IROHA2 measurement status. 

Figure 6: The screenshot of the IROHA2 measurement 
status. 

DATA DISTRIBUTION 
We have been distributing data generated in experiments 

at MLF BL18, which is a beamline for a TOF-Laue neutron 
diffractometer [10], using only Amazon S3 since FY2018. 
This system used an FTP client to access Amazon S3, but 
in order to enable easier data access, we have improved the 
system to a web-based service using the same web delivery 
and access controls as the experimental monitoring de-
scribed in the previous section. In addition, the system in-
troduced an event-driven serverless computing architecture  
linking Amazon S3 and Amazon Lambda. Figure 7 shows 
the system configuration and processing flow. 

Uploading Data to the S3 Bucket 
In the procedure 1 of Figure 7, data uploads from the in-

strument to the S3 bucket are performed on demand by the 
MLF Experimental Database (MLF EXP-DB), a web-
based data management system [11]. Data uploaded on the 
S3 bucket are automatically encrypted. 

HTML Generation with Serverless Computing 
In procedures 2–3, using an event-driven serverless 

computation of Amazon Lambda, the data list in the S3 
bucket is automatically converted into HTML format. 

When data is uploaded, Amazon S3 publishes an event, 
described in JSON format that contains information about 
the uploaded data and directory structure, to Amazon 
Lambda. Then, a Lambda function is triggered, written in 
Python code, to generate the HTML files in the S3 bucket. 

Web Distribution and Access Control 
Procedures 4–8 are basically the same as the experi-

mental monitoring, but the signed URL is issued from the 
MLF EXP-DB. Figure 8 shows a screenshot of MLF EXP-
DB issuing a signed URL.

Figure 7: System configuration and processing flow of the data distribution.
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Figure 8: The screenshot of MLF EXP-DB web interface 
for issuing signed URL. 

Data Downloading 
In procedure 8, the facility user accesses a web site for 

data downloading by clicking the signed URL issued by 
email and downloading the data. Figure 9 shows a screen-
shot of the web site called “MLF Data Browser”. 

Access for facility users is directed to the lowest latency 
edge location by Amazon CloudFront, so they can down-
load large amounts of data at high speeds regardless of the 
location they are accessing from. 

DATA ANALYSIS 
We built a remote desktop environment for data analysis 

using Amazon WorkSpaces, which used the DaaS service. 
Figure 10 shows the configuration of this system. Facility 
users can access the deployed desktop environment by us-
ing a WorkSpaces client. This desktop environment has 
analysis software already installed via Amazon Linux2, 
which is a RHEL7 compatible OS. User authentication is 
performed using a directory service called “Simple AD” of 
the Amazon Directory Service. In addition, the desktop en-
vironment is NFS mounted on the Amazon S3 bucket 
through Amazon Storage Gateway for using data on the S3 
bucket. 

Figure 11 shows a screenshot of the desktop environ-
ment installed.

 
Figure 9: The screenshot of the MLF Data Browser. 

STARGazer is a piece of data processing and visualiza-
tion software for single-crystal neutron diffraction experi-
ments in MLF BL18. 

This desktop environment allows facility users to per-
form data analysis without installing software or down-
loading data to their PC. It also provides them with the 
same interface and online working environment regardless 
of their location. Furthermore, the workload of instrument 
staff regarding user software installation and support can 
be eliminated. 

SUMMARY AND FUTURE PLANS 
We have developed a remote-access infrastructure for 

facility users to perform data downloads and analysis 
alongside using the AWS cloud platform, linking the on-
premises system such as IROHA2 and MLF EXP-DB. The 
microservice approach was adopted to develop these sys-
tems by utilizing architectures such as serverless compu-
ting, object storage, and a VDI, allowing effective devel-
opment and management. 

The developed services are planned to be introduced to 
the neutron instrument at MLF, gradually from FY2019. In 
addition, other public cloud services such as Google Cloud 
Platform and Microsoft Azure also will be introduced as 
needed in the future. 
 

 
Figure 10: System configuration of the remote desktop environment for data analysis.
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Figure 11: Linux-based remote desktop for data analysis. 
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