
RecSyncETCD: A FAULT-TOLERANT SERVICE FOR
EPICS PV CONFIGURATION DATA*

T. Ashwarya, E.T. Berryman, M.G. Konrad
Facility for Rare Isotope Beams, Michigan State University, East Lansing, USA

Abstract
Record Synchronizer (RecSync) is comprised of a client

module called RecCaster and a server module called Rec-
Ceiver. Together they work to make PV (or record)
metadata residing in the Input-Output Controller’s (IOC)
database available to client applications like Chan-
nelFinder. Currently, the server module RecCeiver is a cus-
tom-built Python application that cannot be run as a cluster,
hence it does not provide fault-tolerance. Further, the ex-
isting RecSync does not implement any authentication or
security feature that controls the access to reads and writes
to only verified clients and servers. In this paper, we ex-
plore an alternative to the current RecCeiver called ETCD
which is an open-source off-the-shelf distributed key-value
storage known for its high-availability storage and retrieval
abilities. It provides a role-based authentication feature
along with CA certificates-based and TLS-based security
feature to make client-server communication encrypted
and verified. It also provides useful features like condi-
tional atomic transaction operations, live-watching of keys
in its storage and ability to view historical changes to a key.

RECORD SYNCHRONIZER
The existing RecSync [1] consists of two modules: Rec-

Caster which is a client application that runs as part of an
IOC and RecCeiver which is a stand-alone server applica-
tion written in Python using the Twisted networking li-
brary. Their aim is to make the metadata related to a PV
being hosted on an IOC available to clients like Chan-
nelFinder [2]. The PV metadata that is sent from RecCaster
to RecCeiver consists of EPICS base version, a whitelisted
set of environment variables, name & type of all records
and any info tags associated with the records. Chan-
nelFinder further provides RESTful APIs that various other
applications use in order to read the PV metadata.

Theory of Operation
RecCaster is a client application written in C and works

as an EPICS support module that spawns a thread on start-
up to upload all the IOC records to a server. After spawning
its thread, it waits for an announcement from RecCeiver.
Once it discovers a live and ready RecCeiver, it exchanges
handshake messages with the server. After the exchange of
initial handshaking, greeting messages are sent between
the client and server and then the uploading of the records
to the server begins. Once the records are uploaded suc-
cessfully to the RecCeiver, client and server exchange pe-
riodic heartbeat messages indefinitely to signal they are

alive. In case the client dies and does not respond to the
server, the server closes its connection to the client.

RecCeiver on a successful upload of data from Rec-
Ceiver pushes all the data to ChannelFinder. In case of a
disconnected IOC, it signals to ChannelFinder to mark the
PVs from a disconnected IOC as inactive. RecCeiver can
be additionally configured to write the data it receives from
RecCaster to a SQL database or print it to screen or logs.

RecCeiver is a standalone application that cannot be run
as a distributed service on multiple nodes in a cluster. This
makes RecCeiver a possible single point of failure if the
node running the service goes down or gets disconnected
from network. At this point, until the RecCeiver service is
restored, the data available in clients like ChannelFinder
will be stale and will not accurately reflect an IOC’s state.
Also, the existing RecSync does not provide any authenti-
cation feature that restricts the transfer of the IOC record
metadata to only verified servers and clients. These short-
comings can be overcome using ETCD as a replacement
for the existing Python-based RecCeiver.

ETCD
In this section, we talk about the data model, operations

and useful features of the proposed alternative to the exist-
ing RecCeiver i.e. ETCD [3]. ETCD is a distributed, open-
source key-value storage providing full replication of the
key-value store on a cluster of servers. It is commonly used
for distributed system coordination and metadata storage
like Zookeeper and Consul which are two other popular al-
ternatives. ETCD uses Raft [4] to perform cluster opera-
tions like election of the cluster leader and getting a major-
ity quorum before the data is committed and written to the
disk. Raft protocol is a distributed consensus protocol run
on each member of a cluster to maintain a replicated state
machine. Raft provides the leader election algorithm to
elect a leader node from among the cluster nodes. A cluster-
wide log called replicated log is used to keep the same state
among cluster members. Leader node is responsible for
writing the data to the replicated log and distributing it to
follower nodes to maintain an in-sync state within the clus-
ter. In case the leader node dies or gets disconnected, a re-
election is held to choose a new leader from the remaining
nodes.

Data Model
From a logical perspective, ETCD’s data store is a flat-

binary key space where byte string keys are lexically sorted
indices. The entire key store have multiple revisions that
monotonically increment over the cluster’s lifetime and
older revisions of a key are available for fetch and read.
From a physical point of view, ETCD’s data store is a per-
sistent b+ tree that is ordered by key in lexical byte order

 __

* Work supported by the U.S. Department of Energy Office of Science un-
der Cooperative Agreement DE-SC0000661

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

TUBPL05
714

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

[5]. ETCD maintains a secondary in-memory B-tree index
to speed up read queries [6]. This index contains pointers
to the persistent B+ tree.
ETCD Operations

Operations that change the cluster state like writes and
deletes are handled by the cluster leader as they require
consensus from a majority of the cluster nodes. The leader
node on receiving a new change replicates the information
to the follower nodes. After it receives a receipt of ac-
ceptance from a majority of alive follower nodes, it writes
the change to the disk. Read operations do not need a con-
sensus and hence can be performed by any alive node of
the cluster.

The writes to ETCD can be supplemented with a lease
specifying a certain period of time for which this key
should be kept in the store and once the lease time is ex-
pired or revoked, the key gets deleted from the ETCD store.
Leases are generally used to detect liveness of ETCD cli-
ents and are refreshed periodically by clients to show that
they are alive. Apart from read, write and delete operations,
ETCD provides a watch operation where keys can be asyn-
chronously monitored for modifications. An ETCD watch
continuously watches a key for changes and then sends
these changes to clients over a stream of event messages
that contain information about the change made to the key
in an ordered, reliable and atomic way. ETCD also pro-
vides transaction operations which means multiple re-
quests can be grouped together as a single request and be
processed atomically. Requests are grouped in a then/else
manner and executed if a certain condition exists in the
key-value store. All comparisons are atomic and if all com-
parisons are true, transaction is successful otherwise it is

considered a fail and else (or failure) block is applied.
ETCD uses alerts to notify a user of any issues that re-

quires the user’s attention. Some of these alert situations
include a failed member resulting in an unavailable cluster,
ETCD instance with no leader, high number of leader
changes, more than 1% of requests failing within last 5
minutes, slow requests, file descriptors getting near to ex-
haustion, ETCD cluster communication being too slow,
disk latency being too high and failing ETCD proposals.
An ETCD server provides its local metrics that can be used
to monitor the health of the node and for debugging pur-
poses. These metrics can be fed to monitoring tools like
Prometheus and Grafana (see Fig. 1) to continuously mon-
itor and adjust the health of ETCD cluster [7, 8].

Multi-Version Concurrency Control
Concurrency control is required by any data storage to

provide concurrent access to a piece of data to multiple
readers and writers. Locks are used to restrict reading of a
piece of data while the write operation is being performed.
During the locking period, readers get to read a previous
revision of data hence multiple revisions of the same data
have to be maintained to provide concurrency. To imple-
ment data store revisions, ETCD maintains a 64-bit cluster
wide counter called the ‘store revision’ which is incre-
mented anytime a change is applied to the key-value store
to help sequentially order all updates. It also retains the past
revisions of a key up to a certain time period which is con-
figured by the cluster administrator. A compaction process
is run periodically at the configured setting and deletes the
older revisions of a key.

Figure 1: Grafana View of a 3-node ETCD cluster at FRIB facility displaying various ETCD metrics like DB size, Disk
sync duration, memory, traffic etc.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

Data Management
TUBPL05

715

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Apart from the global counter ‘store revision’, ETCD
maintains ‘create_revision’, ‘mod_revision’ and ‘version’
for each key. ‘Create_revision’ is the store revision when
the key was created, ‘mod_revision’ is the store revision
when the key was last modified and ‘version’ is a local
counter that increments at every modification of the key.

Authentication and Security
ETCD provides authentication as a role-based access

control to key-value storage. Various roles can be created
and assigned to usernames such that only certain roles have
access to modify a certain key or key range thus limiting
the key access to only certain usernames. Access to keys
can be granted for read, write or both.

To provide security, ETCD uses automatic Transport
Layer Security (TLS) and certificates for server-client and
peer communication. ETCD server is configured with a CA
certificate and signed key pair to provide ability to clients
to verify the server identity. Clients can further provide
their own certificates to server in order for server to verify
an authorized client. Peer communication among cluster
members can be encrypted and authenticated by exchang-
ing signed certificates among peers.

ETCD APIs
ETCD uses gRPC remote procedure call based APIs to

provide the following six types of functionality [9].
• KV – APIs for creating, updating, retrieving and delet-

ing key-value pairs from ETCD server.
• Watch – APIs for monitoring changes to a key.
• Lease – APIs for granting, revoking and displaying key

leases.
• Authentication – APIs for setting authentication mech-

anism between server and clients.
• Cluster – APIs for configuring membership to the

ETCD cluster and for viewing cluster state.
• Maintenance – APIs for performing maintenance op-

erations like taking data snapshots, defragmenting and
compacting storage.

KV APIs that are used for reads, writes and transactions

provide the following five API guarantees.
• Atomicity – KV APIs are atomic which means it either

completes entirely or not at all.
• Consistency – KV APIs are consistent which means

the order in which requests are made to the cluster is
kept the same across all members of the cluster.

• Isolation – KV APIs are serially isolated which means
one cannot read intermediate data from ETCD.

• Durability – KV APIs are durable which means com-
pleted operations, written and read data are all durable.

• Linearizability – KV APIs are linearized which means
reads from ETCD return the most current value. How-
ever, watch operations are not linearized and users are
responsible to verify the revisions in watch messages
to check for the order.

There is a command line utility tool called ‘etcdctl’ also
available to communicate with the ETCD cluster through
gRPC. Additionally, there exists a JSON-gRPC gateway
that translates HTTP/JSON requests into gRPC request
calls to ETCD and gRPC responses from ETCD back to
HTTP format.

Fault-Tolerance in ETCD
Faults or failures can occur in any deployment of servers

due to hardware/software malfunctions, power issues or
network disconnection/partition. An ETCD server can au-
tomatically recover from temporary failures like system re-
boots without any loss of existing data stored on its disk.
There are multiple failure scenarios discussed below that
ETCD cluster can handle using its fault-tolerance tech-
niques to recover from permanent failures of its cluster
members.

• Failure of follower nodes – ETCD cluster can tolerate
up to (N-1)/2 follower nodes’ failure in a cluster of N
nodes.

• Failure of the leader node – On leader failure, election
happens after election timeout period within the cluster
to elect a new leader. Write requests are queued till the
re-election is complete. The new leader refreshes all
existing leases.

• Network Partition – During network partition, cluster
gets divided into majority (with more member nodes)
and minority sides (with lesser member nodes). In case
leader is in majority partition, minority side becomes
unavailable leaving majority as the new available clus-
ter. In case leader is on minority side, a new leader is
elected on the majority side.

• Bootstrapping Failure – This kind of failure happens
during the bootstrapping period of cluster when re-
quired members cannot successfully start. This is han-
dled by removing data directories and re-bootstrapping
with a new cluster token.

RecSyncETCD
The new RecSyncETCD comprises of two modules:

RecCaster-ETCD which is a C-based client application that
runs on IOC and ETCD server which is an off-the-shelf
distributed key-value storage as the new RecCeiver. Rec-
Caster-ETCD reads records metadata from IOC database
and writes it to ETCD as key-value pairs. Each record from
IOC database has one key in the ETCD data store and the
corresponding value reflects the record’s metadata. The
value of a non-alias record’s key comprises of the follow-
ing three parts.

1. ENV – This consists of record’s environment infor-
mation like hostname, priority, port, time-to-live in
ETCD, EPICS base version, top directory, architec-
ture, IOC name, EPICS CA related parameters, EPICS
host architecture, current working directory, IOC en-
gineer, IOC location etc.

2. PROP – This consists of information like record type
and if record has any aliases.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

TUBPL05
716

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

3. INFO – This consists of info tags attached to a record
in a key-value format.

For an alias record, the value in ETCD comprises of two

parameters: a flag denoting that this record is an alias and
the name of this alias record’s parent record. RecCaster-
ETCD uses a queue-based data buffer to store write tasks
for each record. On starting, RecCaster-ETCD spawns a
producer thread and multiple consumer threads to increase
performance by sending parallel write requests to ETCD
server. The number of required consumer threads is config-
urable using variable recMaxNumThreads which has a de-
fault value of 5. The producer thread writes each key-value
pair to this queue and each consumer thread reads the key-
value pairs from the queue and performs the write task to
ETCD server.

Theory of Operation
Before the RecCaster-ETCD is started, the configuration

for the ETCD server has to be provided using an EPICS
environment variable ETCD_SERVER. The main thread
(also the producer thread) of RecCaster-ETCD checks for
ETCD_SERVER environment variable and throws error if
this variable is missing or in wrong format. It also checks
for connectivity with the provided ETCD server and re-
tries the checking of connection indefinitely till it estab-
lishes a connection.

On establishing a connection with ETCD server, it asks
ETCD server to grant it a lease for a certain time period
recEtcdLeasePeriod. This parameter is configurable and
has a default value of 15 minutes. In case granting of lease
is unsuccessful, the main thread keeps re-trying to get a
lease granted. After the lease is granted, the main (or pro-
ducer) thread prepares a write task for each IOC record by

forming its key-value pair with an associated lease. These
write tasks are pushed to the data queue where the con-
sumer threads retrieve these tasks and execute them.

Consumer threads use a gRPC-based API from the
ETCDv3 C++ client library [10] to place write requests of
the record’s key-value pair to ETCD. In case any of these
calls fail or return an error value, consumer threads stop
sending any new requests and signal the main thread to
start a fresh upload of records to ETCD with a new lease
identifier. This transaction-like write operation makes sure
that ETCD always has either all IOC records or none to
avoid reflecting any intermediate IOC state to clients like
ChannelFinder.

After all records have been successfully uploaded, con-
sumer threads enter a suspended state and the main thread
periodically sends requests to refresh the lease to ETCD
server to keep the records alive in ETCD. At this point, if a
user exits the IOC, the main thread sends a request to
ETCD server to revoke the lease for this IOC which further
deletes all the IOC records from ETCD server. Debugging
logs for RecCaster-ETCD can be configured to be turned
on by setting the variable recEtcdDebugMode to either 1,
2 or 3 which represent the different logging levels. The de-
fault value of this variable is 0 (or turned off). Figure 2
summarizes the communication between RecCaster-ETCD
client and ETCD server.

Failure Handling
There are multiple failure scenarios possible when either

the ETCD client (i.e. RecCaster-ETCD) or the ETCD
server itself shuts down during operation and takes some
time to restore their state. Here we discuss three such sce-
narios and how RecCaster-ETCD handles each of these.

Figure 2: Communication between RecCaster-ETCD and a 3-node ETCD cluster – Each interaction is numbered 1-7 in a
chronological order.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

Data Management
TUBPL05

717

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• When an IOC goes down unexpectedly - If the IOC
running RecCaster-ETCD reboots, then it restarts the
RecCaster-ETCD and consequently a new ETCD lease
is granted and all the records are written back to ETCD
server with the new lease identifier. During the time
period an IOC is down, records from that IOC remain
in the ETCD server till the lease runs out. Once the
lease expires, the records get deleted and have to be
rewritten by re-starting the IOC.

• When an IOC disconnects from ETCD server – If there
is a network interruption between the IOC and ETCD
server, RecCaster-ETCD will not be able to refresh the
ETCD lease for this IOC. If the network interruption
gets corrected within the remaining lease time, the
lease will get refreshed in the next try. In case the lease
has expired when the network interruption is resolved,
RecCaster-ETCD gets a new lease granted and re-up-
loads all records to ETCD. If the network interruption
occurs while the writes are in progress, RecCaster-
ETCD waits for the network issues to be resolved and
then re-uploads all the records.

• When ETCD server goes down – the ETCD server can
handle temporary reboots by saving all records and
leases on its hard disk. After the server is restored, the
leases can be refreshed successfully by the RecCaster-
ETCD and no records will be lost. In case the server
goes down while the writes are in progress, RecCaster-
ETCD tries indefinitely to connect back to ETCD
server and re-uploads all records on a successful re-
connection.

SUMMARY
ETCD has been found to be a fault-tolerant, secure and

off-the-shelf alternative to the existing custom-built Rec-
Ceiver. Its exhaustive list of APIs provide an easy way for
the RecCaster-ETCD clients to use them in order to save
the record metadata to ETCD storage and keep them alive
for the time period the IOC is alive. RecCaster-ETCD im-
plements a transaction-style upload of all record metadata
of an IOC by which the IOC state in ETCD is never inter-
mediate but always either complete or absent. ETCD leases

are a useful feature that RecCaster-ETCD uses to keep data
alive in ETCD store and to automatically delete an IOC’s
data from ETCD when the IOC gets disconnected. ETCD,
when used in a multi-node cluster provides the fault-toler-
ance benefits where the RecCeiver service will be up till
the majority of ETCD nodes are up. With ETCD’s role-
based authentication, it is possible to have only verified
IOCs upload their record metadata to a verified ETCD
server using secure TLS protocol.

FUTURE WORK
The future work for RecSyncETCD involves the devel-

opment of a new ChannelFinder which reads data from
ETCD and provides this data as RESTful APIs to other cli-
ents. This new ChannelFinder will use data-pull method to
get its data from the ETCD server instead of the existing
data-push method where the RecCeiver pushes all its data
to the ChannelFinder. Another important future work activ-
ity involves adding the authentication and security feature
between ETCD server and the RecCaster-ETCD client.
This will include configuring ETCD server with role-based
authentication to provide access to only the permitted IOCs
to write their records to ETCD. Also, both the ETCD server
and RecCaster-ETCD will exchange and verify CA certifi-
cates to make sure communication happens only among
whitelisted servers and clients.

REFERENCES
[1] https://github.com/ChannelFinder/recsync
[2] https://github.com/ChannelFinder/Chan-

nelFinderService
[3] ETCD, https://etcd.io/
[4] D. Ongaro and J. Ousterhout, “In search of an understanda-

ble consensus algorithm”, USENIX, 2014.
[5] https://en.wikipedia.org/wiki/B%2B_tree
[6] https://en.wikipedia.org/wiki/B-tree
[7] Prometheus, https://prometheus.io/
[8] Grafana, https://grafana.com/
[9] gRPC, https://grpc.io/docs/

[10] https://github.com/nokia/etcd-cpp-apiv3

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUBPL05

TUBPL05
718

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

