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Abstract
The Helmholtz Association has initiated the implementa-

tion of the Data Management and Analysis concept across its
centers in Germany. At Helmholtz-Zentrum Berlin, both the
beamline and the machine (accelerator) groups have started
working towards setting up the infrastructure and tools to
introduce modern analysis, optimization, automation and AI
techniques for improving the performance of the (large scale)
user facility and its experimental setups. This paper focuses
on our first steps with Machine Learning (ML) techniques
over the past months at BESSY II as well as organizational
topics and collaborations. The presented results correspond
to two complementary scenarios. The first one is based on
supervised ML models trained with real accelerator data,
whose target are real-time predictions for several operational
goals (beam lifetime, injection efficiency, beam loss...); some
of these techniques are also used for additional tasks such
as outlier detection or feature importance analysis. The sec-
ond scenario includes first prototypes towards self-tuning of
machine parameters in different optimization cases (booster
current, injection efficiency, orbit correction...) with Deep
Reinforcement Learning (RL) agents.

MOTIVATION
The integration process of ML tools with real accelera-

tor data at BESSY II is being carried out with two main
goals: modelling and prediction on the one hand and self-
optimization on the other. As for today many specific predic-
tion models for different accelerator parameters have been
already constructed and analyzed - apart from the beam life-
time case presented here, different beamloss monitors along
the ring as well as injection efficiency have been modeled.
This is also an important preparatory step for the RL-based
tuning as well as for the self-optimization of surrogate mod-
els. Besides, further significant effort is being put into beam-
line raytracing and the conception of digital twins, which can
be also connected with the RL-based self-optimization. The
aim of this paper is to summarize some of this application
cases as a sort of proof-of-concept of the major possibilities
opened by the incorporation of ML tools at BESSY II.

PREDICTION OF BEAM LIFETIME
We present a representative case of beam lifetime predic-

tion restricted to a blind scenario: time-series-based predic-
tion of beam lifetime only with context variable readbacks,
i.e., omitting the previous measurements of the target vari-
able. This scenario allows us to identify unknown correla-
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tions and patterns in the readbacks avoiding an excessive
reliance on the previous target variable measurements but
also to reuse the information and experience gained with the
prediction models in a RL context.

The beam lifetime 𝜏 is defined through the current decay
rate 1

𝜏 = − ̊𝐼
𝐼 , where 𝐼 denotes the beam current (for a study

of the beam lifetime at BESSY II see, e.g., [1]). For these
experiments we approximated the instantaneous lifetime
through a piecewise linear regression with 𝑘 previous mea-
surements of the beam current 𝐼𝑡 (usually 𝑘 = 20 seconds):

1
𝜏 ≈ − 1

𝐼𝑡

∑𝑘
𝑖=0 (𝐼𝑡−𝑖 − 𝐼𝑡0) (𝑡 − 𝑖 − 𝑡0)

∑𝑘
𝑖=0(𝑡 − 𝑖 − 𝑡0)2

The potentially beam lifetime affecting variables used as
input (185 after preprocessing, see Appendix) are:

• Gap and shift of insertion devices (elliptical) undulators
affecting the dynamic aperture (21 readback variables).

• Power supply currents into quadrupoles define the lin-
ear optics (58 readback variables), into sextupoles de-
fine non linear behavior (7 variables).

• Offsets to power supplies for quadrupoles define the
feed forward compensations (38 variables).

• Collisions with rest gas particles, vacuum pressures
measured by getter pump current (12 variables).

• Local beam loss fractions, monitored by counters close
by (49 variables).

Comparison of Methods
We have worked with the following supervised learning

models:

• Extremely Randomized Trees (ExtraTrees, [2]).

• Support Vector Regression approximated with Random
Fourier Features (SVR-RFF, [3]).

• Standard dense feed-forward Neural Networks (DNN,
e.g., [4]).

Table 1 contains the results of these prediction models
for two different test set elections: a random uniform set
(20%) along the measurement period or the last 20% of the
measurement period. The different hyperparameter configu-
rations after grid search as well as further test settings can
be found in the Appendix1.
1 Other tested algorithms (traditional Random Forests and SVR with differ-

ent kernels) presented similar or worse results so we excluded them from
the table for the sake of clearness.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPL01

TUCPL01
754

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning



Table 1: Beam Lifetime Prediction Experiments

Test set Algorithm RMSE 𝑅2

Avg. Pers. Mov. pers. Model Pers. Mov. pers. Model

Random 20%
ExtraTrees

0.201319 0.099248 0.091464
0.068175 ± 0.000038

0.756961 0.79359
0.885322 ± 0.000128

SVR-RFF 0.077432 ± 0.000216 0.852064 ± 0.000825
DNN 0.069457 ± 0.000342 0.880964 ± 0.001177

Last 20%
ExtraTrees

0.231393 0.095732 0.078776
0.194755 ± 0.000952

0.828836 0.884099
0.291586 ± 0.006932

SVR-RFF 0.121407 ± 0.003349 0.724506 ± 0.015291
DNN 0.125046 ± 0.005757 0.707345 ± 0.027032

Specially interesting for us are the results with the last
20% as test set, since they represent a major challenge for
the prediction models - as we see with ExtraTrees, the
random test set can be successfully predicted with probably
overfitted models but perform poorly in the chronological test
set. Nevertheless, DNN and SVR-RFF do manage to forecast
quite accurately the trends in the ca. 3 days of completely
unseen data at the end of the measurement period (Figs. 1
and 2), even keeping the same hyperparameter configuration
used for the random test set in the case of SVR-RFF. In other
words, these models present good results with a time-series-
based evaluation, although they predict with no reference
of the previous lifetime measurements, only with respect to
the current accelerator readbacks.
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Figure 1: Prediction of beam lifetime with SVR-RFF.
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Figure 2: Prediction of beam lifetime with DNN.

OPTIMIZATION OF BOOSTER CURRENT
The second main development area regarding ML at

BESSY II is the use of Deep Reinforcement Learning (Deep-
RL) for the self-optimization of accelerator parameters. For
this, we are developing a new framework called RLControl.

The initial case tested with RLControl at BESSY II is the
optimization of booster current. It has been observed that,
after long interruptions of the machine operation, the booster
current tends to be low. As for today, manual parameter
tuning is required to recover acceptable current values.

The global environment description for the several tests
carried out in the booster current optimization case is the
following2:

• State variables:

– High (radio) frequency - master clock.
– Voltage in LINAC.
– Two klystron current diagnostic measurements.

• Action variable: time phase in LINAC3

• Reward: (normalized) booster current per bunch.

Deep Reinforcement Learning
RLControl is based on Deep Deterministic Policy Gra-

dient (DDPG, [5]). DDPG is a recent actor-critic, model
free deep-RL algorithm for continuous environments. As
many other approaches in RL, this algorithm is based on the
update of the so-called action-value function 𝑄 ∶ 𝑆 × 𝐴 → ℝ
with deterministic target policy 𝜇 ∶ 𝑆 → 𝐴 making use of
the recursive relationship known as Bellman equation:

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠𝑡+1∼𝐸 [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡))]

where 𝑠𝑡 ∈ 𝑆 and 𝑎𝑡 ∈ 𝐴 denotes the state resp. action
at time 𝑡, 𝑠𝑡+1 ∈ 𝑆 denotes the next state returned by the
environment 𝐸 and 𝑟(⋅, ⋅) is the reward function. In the
DDPG agent proposed in [5] both 𝑄-function and policy
are approximated with neural networks, and further relevant
implementation tricks are proposed: delayed target networks
(𝑄�̃�, 𝜇�̃�), replay buffer...

2 Further algorithm and test settings can be found in the Appendix.
3 The election of LINAC time phase as action variable is supported by

previous observations showing that the modification of this parameter
does not affect the injection efficiency.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPL01

Feedback Control and Process Tuning
TUCPL01

755

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: RLControl - Preliminary short test for booster current optimization. The reward (instant booster current per
bunch) is plotted in blue, while the actions (LINAC time phase) are plotted in red - the remaining lines correspond to state
variables. The agent is pre-trained with 30 days of historical data (top-up mode) as demonstration. Exploration periods are
shaded.

Figure 4: RLControl - Long test for booster current optimization during user operation with automatic exploration schedule.
Same color configuration as Fig. 3. The agent is pretrained with 30 days of historical data (top-up mode). Exploration with
automatic schedule appears shaded.

Tests

Figure 3 shows and describes a successful preliminary
test with RLControl for booster current optimization during
machine commissioning time. During the test it alternates
periods of exploration - shaded in the plot - and optimization,
i.e., learning with no exploration. Exploration is carried out
with Parameter Space Noise, which brings stability and im-
proves each optimization period. The length of the periods
(ca. 2 min) approximates the average injection time interval
in top-up mode, so the test suggested that fruitful explo-
ration can be carried out with automatic scheduling between
injections. Nevertheless, many issues had to be corrected
during the first preliminary tests until the satisfactory agent
behavior observed in Fig. 3 was achieved - for example:

• Long training time (points every 2 seconds, brute force
synchronization) and normalization problems → im-
proved through demonstration with historical data (in-
spired by the ideas of expert demonstration in [6]).

• Slow reaction time to reward modifications → solved
by giving up average current as reward and using the
instantaneous current per bunch4.

• Non-optimal exploration → solved by implementing
Parameter Space Noise ([7]).

Figure 4 shows and describes the most important test so
far with RLControl because of its duration (ca. 9.5 hours)
and also because it was not carried out during pure machine
commissioning but during user operation time at BESSY
II. Therefore, an automatic schedule had to be conceived
in order to restrict exploration to the meantime between
injections.

In the test plotted in Fig. 4 exploration with automatic
schedule is carried out during the first hour - although not
continuously: pure exploration is scheduled to take place
only in the meantime between injections during this first
4 In the plots the average booster current variable is always showed, in

order to improve the visibility.
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hour. This scheduling allowed the agent to avoid sub-optimal
booster current at the injection point that might interfere
with the user activity. Optimization (learning without explo-
ration) is activated always shortly before each injection (see
Fig. 5). The agent kept optimizing (and learning) success-
fully during the next 8.5 hours of user operation.

automatic scheduling

State
klystron diagnostics
LINAC voltage
master clock 

Agent
RLControl

Agent
RLControl

Environment
 BESSY II

Environment
 BESSY II

Reward
booster current 
per bunch

Action
LINAC time phase

Injection soon?

Yes: optimize No: explore

Figure 5: RL pipeline for booster current optimization with
automatic scheduling.

OPTIMIZATION OF INJECTION
EFFICIENCY

The most recent application of RLControl at BESSY II is
the injection efficiency case. Nowadays manual tuning is also
required for improvement of the injection efficiency, which
is observed to be affected by temperature. This motivated
us to put effort into an automatized solution for this case
as well. The environment description for the first injection
efficiency optimization tests is the following:

• State variables:

– Number of bunches generated by the LINAC (1,
3 or 5)

– Injection angle mismatch, measured by the hori-
zontal and vertical beam position in the transfer
line.

– Current measured during the booster acceleration
phase (averaged per pulse).

– Measured loss rate after extraction from the
booster.

• Action variable: Deflection angle into the storage ring,
generated by the 2𝑛𝑑 septum.

• Reward: last injection efficiency, measured as fraction
of current increase generated in the storage ring by the
charge accelerated in the booster.

Tests
First injection efficiency tests with RLControl during ma-

chine commissioning time presented some issues regarding
pretraining with historical data, mainly due to the fact that
septum external conditions vary along time, inducing varia-
tions in the optimal action intervals that were not reflected

in the chosen state variables. This fact slowed down enor-
mously the learning process of these first tests, since in this
case we only get one data sample per injection (in average ev-
ery ca. 2 minutes in multibunch mode). Although the agents
of these first tests (trained from scratch) managed to find
good actions after very few training steps (ca. 100) in stable
conditions and even for different number of bunches, they
failed when we forced the agent to face certain unknown
states - in particular when booster current was modified
internally.

Figure 6 shows the first preliminary test for injection effi-
ciency where pretraining with historical data was carried out
successfully. For this, we reduced the considered period of
historical data to 23 days but included also data from non-top-
up mode in order to increase the range of actions observed
in the pretraining phase. In this test the agent manages to
find and improve the optimal action regions during the first
phase of natural machine conditions (until ca. 18:40) but
also in the second phase, where we internally modified the
booster current and the number of bunches.

UNDERSTANDING BEAMLINE
PERFORMANCE

Beamline raytracing is a powerful tool to understand X-
ray-beam propagation and for optimizing beam properties for
the experimental requirements. However, at today’s beam-
lines at synchrotrons and FELs one needs many components
having altogether a couple of hundred parameters to fulfill
these needs. This makes it impossible to map the full param-
eter space with traditional simulation tools. We approach
this challenge with various deep learning methods (autoen-
coder, convolutional neural networks, tensor products, ex-
treme gradient boosting, k-nearest neighbors, automatic-
differentiation, ...) learning raytracing as well as beamline
parameter prediction from photon diagnostics.

The beamline parameters cover a variety of mirror, grat-
ing, slit and source properties: misalignments, misorienta-
tions, offsets, slope errors, radii, entrance arm length, line
density, fix focus constant, thermal distortion, etc. This al-
lows, on the one hand, for predictions of X-ray footprints at
specific positions and also of full traces through the entire
beamline and on the other hand, the determination of the
current state of a beamline becomes accessible by simple di-
agnostics in combination with the neural network. Addition-
ally, tuning the beamline to specific user demands can now
be handled by the ML model providing a high-dimensional
solution in contrast to sequential beamline parameter tuning.

Figure 7 shows an example of the inversion of beam-
line raytracing. The chosen diagnostic are photon footprint
screens at three different positions in the beamline. These
are used from the neural network to predict 28 essential
beamline parameters (100 parameters were varied in the
training data).
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Figure 6: RLControl - Preliminary test for injection efficiency optimization. The agent is pretrained with 23 days of
historical data. Reward (injection efficiency) is plotted in blue, actions (septum deflection angle) is plotted in red. Ad-hoc
modifications of the number of pulses (in black) and booster current (in purple) are carried out during the test. Exploration
periods appear shaded.

Figure 7: Inversion of beamline raytracing.

MODELLING INTEGRATION: DIGITAL
TWIN

The Accelerator/Source Side
It is worth briefly mentioning an additional direction for

deep-RL agents we are also currently investigating, which is
based on the multiphysics simulation toolkit OCELOT ([8]).
This framework gives us the possibility of using surrogate
models for the training of deep-RL agents, complementing
or replacing the pretraining with historical data. Some tests
with toy-examples (emittance, orbit-correction...) in small
lattices have been already carried out. Nevertheless, the
major challenge to be accomplished is the export of a RL-
agent trained with the virtual BESSY-II-lattice to the real
accelerator.

The Beamline/X-ray Side
Within Helmholtz Association and the Helmholtz-

Zentrum Berlin there is a general initiative to take advantage
of ML methods for process analysis and optimization and
for the retrieval of scientific data from the measurements.

At the light source there is a close coordination of activities
developing toolsets for the accelerator and the beamlines
[9]. The available data from previous operation periods are
still scarce. Nevertheless activities focus on improving the
prerequisites for common ML methodologies.

CONCLUSION
The main achievements presented in this paper can be

summed up as follows:

• Beam lifetime at BESSY II can be successfully pre-
dicted in a time-series fashion through supervised lear-
ning models trained only with 185 accelerator variables
readbacks - i.e., excluding previous lifetime measure-
ments.

• The accelerator self-optimization framework RLCon-
trol was able to solve a first use case (booster current
maximization) at BESSY II, being tested even during
8.5 hours of user operation with the help of injection-
based automatic scheduling.

• Further effort has been put into the application of RL-
Control for more advanced use cases such as injection
efficiency optimization, leading also to successful pre-
liminary tests.

• Beamline performance analysis (inversion of beamline
raytracing with ML tools) is being also investigated
with promising results. This involves also proposal for
re-commissioning plans.

Some of the next steps in the roadmap for the integration
of ML tools at BESSY II are:

• Measurement prediction framework:

– Build models for further target variables such as
purity.
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Table 2: Lifetime Prediction Experiments - Grid Search

Split Algorithm Chosen hyperparameter configuration

Random
ExtraTrees (bootstrap, *True), (max_depth, None), (max_features, None), (n_estimators, 500)

SVR-RFF (batch_size, *32), (epochs, 50), (gamma, *1/n_atts), (loss, mse), (mode, rff), (n_com-
ponents, 5000), (optimizer, adagrad)

DNN

(activation, relu), (batch_size, *32), (dropout_rate, 0.1), (epochs, *20), (hidden_lay-
ers, 200+200+100+50+25+12),(intermediate_dropouts, first), (loss, mse), (optimizer,
adagrad)

Chronological (activation, *tanh), (batch_size, *32), (dropout_rate, 0.05), (epochs, *20), (hidden_lay-
ers, *200+200), (intermediate_dropouts, all), (loss, mse), (optimizer, adagrad)

– Classification approach.
– Surrogate models.

• RLControl:

– Further tests, investigation and use cases (injec-
tion efficiency with more state and action vari-
ables, orbit correction with OCELOT pretrain-
ing...).

– Integration of advanced data collection tools such
as Bluesky ([10]).

– User interfaces.

• Beamline adjustment and automated optimization
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APPENDIX
Implementation

• Supervised learning for measurement prediction:
scikit-learn ([11]) and keras ([12]) with
tensorflow 1.12 backend ([13]).

• RLControl: our implementation relies essentially on
keras-rl ([14]), but we have incorporated some ex-
tensions such as Layer Normalization, Parameter Space
Noise and pretraining with historical data.

Beam Lifetime Prediction - Settings
• Measurements period from 2019-07-01 19:00:00 until

2019-07-16 19:00:00, restricted to top-up and multi-
bunch. From this, 80% (31631 samples) is used for
training and 20% for test (7908 samples). In both cases
of test set election (random 20% and last 20%) the
following baselines are used:

– Test set lifetime average.

– Persistence: previous lifetime measurement.
– Moving persistence: moving average of the last 5

lifetime measurements.

• Hyperparameter optimization: grid-search with 5-
folded cross validation. The chosen configurations can
be found in Table 2 - fixed hyperparameters along the
grid search are marked with *. For NNs two searchs
(with random and chronological splits) had to be car-
ried out; this was not necessary for the other models,
since the configuration obtained from the random split
performed well.

• Data preprocessing:

– Outlier detection with Isolation Forest ([15]) with
contamination 0.02.

– [−1, 1] linear normalization.
– PCA of the input variables (with 185 compo-

nents).

RLControl - Settings
• Neural networks: in both cases, relu used as inner

activation function and adam as optimizer (lr = 0.001).

– Critic network: five hidden layers
(25+50+25+10+5 neurons) and concate-
nates actions at the first hidden layer. Linear
activation at the output layer.

– Actor network: three hidden layers (25+10+5 neu-
rons), all of them with layer normalization ([16]).
tanh used as activation for the output layer.

• Data preprocessing: [−1, 1] linear normalization, his-
torical data downsampled to 60 seconds in the booster
current case.

• Parameter Space Noise: 𝛿 = 0.01, 𝛼 = 1.1, initial
𝜎 = 0.2.

• Training parameters: 𝛾 = 0.2, pretraining with 10000
steps (2000 before actor training in the booster current
case), warm-up with 32 steps, target model update rate:
0.01.
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