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Abstract 
LLNL has developed a low latency, real-time, closed-

loop, woofer-tweeter Adaptive Optics Control (AOC) sys-
tem with a feedback control update rate of greater than 16 
kHz.  The Low-Latency Adaptive Mirror System (LLA-
MAS) is based on controller software previously devel-
oped for the successful Gemini Planet Imager (GPI) instru-
ment which had an update rate of 1 kHz. By tuning the 
COTS operating system, tuning and upgrading the pro-
cessing hardware, and adapting existing software, we have 
the computing power to implement a Linear-Quadratic-
Gaussian (LQG) Controller in real time.  The implementa-
tion of the LQG leverages hardware optimizations devel-
oped for low latency computing and the video game indus-
try, such as fused multiply add accelerators and optimized 
Fast Fourier Transforms.  We used the Intel Math Kernel 
Library (MKL) to implement the high-order LQG control-
ler with a batch mode execution of 576 6x6 matrix multi-
plies.  We will share our progress, lessons learned and our 
plans to further optimize performance by tuning high order 
LQG parameters.   

INTRODUCTION 
The development of an Adaptive Optics (AO) system to 

correct for high wind-blown turbulence requires a team of 
experts in the fields of optics, fluid dynamics, controls sys-
tems, and software.  This paper focuses on the processing 
and software optimizations. 

Increasingly, the more significant terms in adaptive op-
tics wavefront error budgets spanning a myriad of applica-
tions are temporal wavefront errors.  These are associated 
with an adaptive optics system’ inability to keep up with 
ever evolving turbulence due to a deficiency in sensor up-
date rate (“frame rate”) and/or the latency in the system. 
The latency is the amount of time required for the wave-
front sensing measurement to be completed and readout, 
the reconstruction computation time, and the electrical and 
mechanical latency in updating the deformable mirror po-
sition 

The maximum frame rate is set by multiple factors, in-
cluding the camera readout time, reconstruction latency, 
and beacon brightness, and is thus tied to the total end-to-
end latency.  With standard leaky integrator controllers uti-
lizing modal gains, there is limited performance benefit to 

increasing the frame rate beyond a level at which the la-
tency is 2-3 frame times.  The principle strategy to reduce 
bandwidth and delay errors is to reduce end-to-end latency.  

This manuscript is concerned with the wavefront recon-
struction process in adaptive optics systems, particularly 
for the Low Latency Adaptive Mirror System (LLAMAS) 
at Lawrence Livermore National Laboratory [1].  This 
testbed was designed to run with minimal computational 
latency so as to maximize performance at high frame rates 
(> 16 kHz).  The system utilizes Linear Quadrature Gauss-
ian (LQG) control to maximize bandwidth at a given frame 
rate [2,3].   

PROCESSING IMPROVEMENTS  
The team focused on improving the processor-intensive 

portion of the AO system.  Since the processing system was 
selected for GPI during its Preliminary Design Phase, the 
technology has advanced considerably. The latest servers 
and operating systems were researched with latency per-
formance and determinism in mind.    

Hardware Selection 
The team selected the HPE ProLiant DL580 Gen 10 

8SFF CTO Server.  The LLAMAS server specifications 
and server specifications for the GPI project are listed for 
comparison in Table 1.  
Table 1: LLAMAS vs. GPI Server Specification 
Comparison 

 CPU Clock 
(GHz) 

Cores Cache 
(MB) 

RAM 
(GB) 

LLA-
MAS 

Intel 
Xeon 

Platinum 
8158 (3) 

3.0 3 x 12 24.75 128 

GPI Intel 
Xeon 
E7440 

2.4 4 x 4 16 32 

 
With only a 25% improvement in clock speed, one may 

conclude that the performance of the software would not 
improve by magnitudes. This metric is no longer the pri-
mary factor when comparing performance. The increase in 
cores provides a performance advantage for a software ar-
chitecture that uses multiple execution threads to maximize 
the parallel processing.  Even though the LLAMAS server 
has less sockets (3 vs. 4), the number of cores per socket is 
also a processing advantage if execution multiple threads 
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on the same socket. With 36 cores available, we were com-
fortable with the processing power necessary to achieve the 
LLAMAS project performance goals. 

Hardware Tuning for Low-Latency The server was 
tuned referencing the Hewlett Packard Enterprise, “Con-
figuring and tuning HPE Proliant Servers for low-latency 
applications [4] 

Table 2: Hardware Tuning Parameters 

BIOS Parameter Value 

Workload Profile Low Latency 

Thermal Configuration Optimal Cooling 

Minimum Processor Idle  
Power Package C-State 

No Package State 

Minimum Processor Idle  
Power Core C-State 

No C-States 

Memory Refresh Rate 1x Refresh 

Memory Patrol Scrubbing Disabled 

Intel VT-d Disabled 

Intel Turbo Boost Technol-
ogy 

Disabled 

Intel Hyperthreading Options Disabled 

HPE Power Regulator HPE Static High Perfor-
mance Mode 

HPE Power Profile Maximum Performance 

Energy/Performance Bias Maximum Performance 

Dynamic Power Capping 
Functionality 

Disabled 

Collaborative Power Control Disabled 

Operating System Selection 
The GPI software was designed using the Wind River 

Real-Time Core [5]. Since this operating system was no 
longer available, the team had to select a different OS.  In 
order to maintain a similar software architecture, the team 
searched for a similar OS solution that had the Linux kernel 
executing as low-priority on a real-time executive.  This 
would have allowed us to easily port the prior existing soft-
ware.  After a thorough trade study, we decided to re-archi-
tect the software and use the latest Red Hat Enterprise 
Linux for Real Time.  This OS is designed for low-latency 
determinism which provides low variance response times.  

 
Figure 1: Benefit of Using Realtime over Standard Kernel 
System Tuning [6]. 

Figure 1 compares a million samples of machines using 
the Red Hat Enterprise Linux 7 and Red Hat Enter-
prise Linux for Real Time kernels respectively. The blue 
points in this graph represent the system response time (in 
microseconds) of machines running a tuned Red Hat En-
terprise Linux 7 kernel. The green points in the graph rep-
resent the system response time of machines running a 
tuned realtime kernel. The figure indicates that the re-
sponse time of the realtime kernel is very consistent, in 
contrast to the standard kernel, which has greater variabil-
ity with points scattered across the graph [6]. 

OS Tuning for Real-Time Red Hat provide tools and 
documentation to tune the OS for latency and determinism.  
We followed the Red Hat Enterprise Linux for Real Time 
Tuning Guide [7]. 

 We used the “tuned-adm” command to experiment 
with the various predefined profiles. We set the profile to 
“realtime”.  It appeared the various profiles did not make a 
significant impact to the performance of the LLAMAS 
software. We plan on revisiting the investigation of the OS 
tuning.  We also experimented with the following: 

• Setting the smp_affinity mask to isolate interrupt re-
quests to specific cores 

•  Used “isolcpus” to isolate CPUs from the kernel 
scheduler 

Tuning Results (Cyclictest) 
To measure the effects of tuning our system, we used 

Cyclictest which is included in the RedHat rt-tests package.  
The following Cyclictest latency plots [8] in Figure 2 
demonstrate the improvement in the system after tuning 
(Figure 3) the CPU and operating system.  Note that we 
tuned the processing system to optimize determinism as 
opposed to average low latency.  Processors are tuned by 
default for low latency for typical server applications.  For 
closed loop control systems implementations, any latency 
greater than the correction rate results in data loss.  This 
data loss results in reducing the performance of the closed 
loop system. 
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Figure 2: Cyclictest Histogram, before tuning. 

 

 
Figure 3: Cyclictest Histogram, after tuning for determin-
ism. 

LLAMAS SOFTWARE ARCHITECTURE 
Software Architecture Modifications 

Due to the selection of Red Hat RT Linux, the software 
architecture needed to be modified from the WindRiver 
Linux architecture used on the prior project. With the in-
crease in cores, we were able to experiment with assigning 
execution threads to various cores and sockets.  With min-
imal experimentation, we were able to verify the thread 
groupings on specific sockets.  As expected, grouping exe-
cution threads on the same socket improved performance. 
We also set the processor or core affinity of the LLAMAS 
execution threads to take advantage of the saved cache and 
thus improving performance.  The repetitive nature of the 
LLAMAS AO processing architecture fully takes ad-
vantage of cache memory.  

PREDICTIVE ADAPTIVE OPTICS 
Increasing system frames rates beyond the 1 kHz that 

was achieved with astronomical AO systems could signif-
icantly reduce bandwidth wavefront error (WFE) and im-
prove contrast. Predictive control algorithms provide a sec-

ond way to “keep up” with fast-moving turbulence. Predic-
tive methods use an internal model of the AO system and 
turbulence dynamics and explicitly predict ahead given the 
known system delays. This requires accurate knowledge of 
the AO system itself, as well as robust “identification” of 
the aberration of interest. Our baseline approach to predic-
tive control uses a Linear-Quadratic-Gaussian (LQG) con-
troller. This approach has already been experimentally val-
idated in GPI’s AO system, where it provided excellent 
correction of large focus vibrations at specific temporal 
frequencies. 

LINEAR-QUADRATIC-GAUSSIAN 
CONTROL (LQG) 

Tip, tilt and focus can be corrected with a LQG control-
ler to selectively suppress vibrations, even at high temporal 
frequencies. Technical details on the LQG algorithm can 
found in Poyneer’s research article, “Performance of the 
Gemini Planet Imager’s adaptive optics system” [9].  With 
the increased processing power of the LLAMAS system, 
we were able increase the frame rate which resulted in in-
creased performance.   

MATRIX MULTIPLICATION  
The software implementation of an LQG controller con-

sists of several matrix multiplications which can be one of 
the most processor intensive operations in the AO system.  
Matrix multiplication can be implemented on the CPU with 
math libraries, or a Graphical Processing Unit (GPU), or a 
Field-Programmable Gate Array (FPGA).  For cost and 
time constraints, we chose to pursue an implementation 
with a Linux standard math library. 

 

Intel Math Kernel Library (MKL) 
After researching various Linux math libraries to imple-

ment to support matrix math, we settled on the Intel MKL 
library which leveraged the hardware selected for the pro-
ject.   

The Intel MKL takes advantages of the Advanced Vector 
Extensions 2(AVX2) features in the Intel Xeon processor. 
The AVX2 utilizes the fused multiply-add (FMA) hardware 
feature that greatly increases the performance of the multi-
ply-add operations that are extensively used in matrix mul-
tiplication [10].   

The published performance benchmarks of some of the 
MKL functions start with matrices of dimension 256 x 256. 
It was anticipated the matrix dimensions would be less than 
128.  A test application was written to provide the timing 
of the dgemm and sgemm functions for various size matri-
ces.  Refer to the results in Table 3 which are graphed in 
Fig. 4. 
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Table 3: Test Application MKL Timing Results 
N dgemm 

double pre-
cision (ns) 

sgemm 
single 
precision 

(ns) 

C–code 
double pre-
cision (ns) 

4 77 77 62 
5 82 88 93 
6 84 95 129 
7 88 96 172 
8 85 90 218 
10 116 103 344 
12 116 103 484 
16 113 119 833 
24 142 227 1831 
48 250 437 7186 
64 404 609 12763 
128 1552 1920 51389 

 

Figure 4: MKL Timing. 

LQG DESIGN 
Low-Order LQG 

The fundamental LQG algorithm implemented in LLA-
MAS is based on the GPI approach. However, extra pro-
cessing power enabled LLAMAS to use a more general, 
matrix-based implementation that provides flexibility to 
change filter order and aberration models. In contrast, the 
former implementation was hard-coded to work with a sin-
gle aberration model. This more general framework is 
based on standard LQG equations, such as those given in 
Looze, “Minimum variance control structure for adaptive 
optics systems” [11].   

The LQG block diagram or flow diagram was provided 
in Fig. 5. 

  
 

d_t+1 y_t∑ 

(I-KC)D
Nx1

× × 

× 

× 

∑ 

K
Nx1

(I-KC)A
NxN

G
1xN

xhat_t|t

∆ 

∆ 

u_t|t = d_t+1

u_t-1|t-1 = d_t

xhat_t-1|t-1

Constant Matrices

unit delay

unit delay

Step 1

Step 2

Step 3

 
Figure 5: At each time step, the tip or tilt residual (y_t, right 
side) is sent into the LQG filter. It is weighted by multipli-
cation by the Kalman gain vector K, added to the one-step 
prediction of the prior state. The impact of prior commands 
are added, then the gain vector G determines the best mir-
ror commands. Both G and K are calculated offline through 
numeric solutions to the discrete Algebraic Riccati Equa-
tions.  LQG Flow Diagram courtesy of Lisa Poyneer. Dou-
ble real data was used for implementing the low-order 
LQG with three modes (x, y, & focus). 

LQG Software Implementation 
The software implementation of the LQG Flow Diagram 

involves 3 primary steps of calculation using MKL func-
tions.  The former implementation of the LQG algorithm 
was about 600 lines of C-code optimized for fixed dimen-
sion matrices. Matrix math libraries were not available for 
the Wind River Real-Time OS. Implementation using the 
MKL was implemented in only about 50 lines of C-code 
while allowing for any size of matrix.  This architecture 
allowed the team to easily optimize the size and processing 
time for optimal performance. 

The following minimal pseudo code, Table 4, for the 3 
steps is listed to help the reader understand the implemen-
tation.  

The following four constant matrices are required for the 
LQG: 

(I-KC)A  lqgN_S x lqgN_D matrix  (I-KC)A 
M_G  1 x lqgN_S vector G 
M_IKCD lqgN_D x 1 vector (I-KC)D 
K   lqgN_D x 1 vector K 
The values in these matrices are determined by the in-

tensity of the turbulence.  The matrices are initialized from 
files and can be changed while the LLAMAS software is 
executing.  Multiple sets of matrices can be defined for var-
ious levels of turbulence.  This allows for optimal perfor-
mance of the LQG filter.  
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Table 4: LQG Pseudo-Code 

Step 1 
// C = (I-KC)A * xhat_t-1 + y_t * K 
 cblas_dgemm (…) 
 

Step 2 

// xhat_t = C + d_t * (I-KC)D 
#if MKL 

cblas_daxpy(..) 
#else if GENERIC 
        for (i = 0; i < (lqgN_S*lqgN_D); i++) { 
           M_C[m*lqgN_S*lqgN_D + i] += d_t[m] * 
           M_IKCD[i]; 
         } 
 #else   // Optimized because D only has one non-
zero element 
         M_C[m*lqgN_S*lqgN_D + 0] += d_t[m] * 
          M_IKCD[0]; 
 #endif 

Step 3 

// d_t+1 = xhat_t  *  G 
#if MKL 

d_t[m] = cblas_ddot(..) 
#else if GENERIC   // regular multiplication, non 
optimized 
        d_t[m] = 0; 
        for (i = 0; i < (lqgN_S*lqgN_D); i++) { 
             d_t[m] += M_C[m*lqgN_S*lqgN_D + i] 
*                  
            M_G[i]; 
         } 
 #else   // Optimize because G only has one non-
zero element 
         d_t[m] = M_C[m*lqgN_S*lqgN_D + 3] *  
         M_G[3]; 
 #endif  
 

Step 4 

// Setup for the next frame 
// Save state for the next frame  
// xhat_t → xhat_t-1;  
// d_t+1 → d_t 
//Initialize the Kalman Gain vector 
 

LQG Algorithm Timing 
A test application was written to determine the pro-

cessing time for various models. This test application was 
used to select data size, data type, and matrix size. Steps 2 
& 3 of the test application was modified to use the MKL 
function, C-code, or optimized C-code. The optimized C-
code allowed for measuring the timing benefit of reducing 
the complexity of the LQG model. Below are the timing 
results for one LQG model with matrix dimensions of 6x6. 
Note: double precision is 8 bytes, float is 4 bytes. 

The data in Table 5 helped the team determine the data 
type and data size while still maintaining our processing 
time budget. 

 

Table 5: Test Application Timing, Matrix Dimension 6x6 

D
at

a 
Si

ze
/T

yp
e 

M
od

es
 

St
ep

 1
 

St
ep

 2
 

St
ep

 3
 

To
ta

l T
im

e 
(µ

s)
 

Ti
m

e 
pe

r 
m

od
e 

(n
s)

 

Double/ 
Real 

576 cblas_ 
dgemm 

cblas_ 
daxpy 

cblas_ 
ddot 

84 146 

Double/ 
Real 

576 cblas_ 
dgemm 

opti-
mized 

cblas_ 
ddot 

76 132 

Double/ 
Real 

576 cblas_ 
dgemm 

C-code C-
code 

84 146 

Double/ 
Real 

576 cblas_ 
dgemm 

opti-
mized 

opti-
mized 

62 108 

Double/ 
Real 

3 cblas_ 
dgemm 

C-code C-
code 

0.45 150 

Double/ 
Real 

3 cblas_ 
dgemm 

cblas_ 
daxpy 

cblas_ 
ddot 

0.42 140 

Double/ 
Real 

3 cblas_ 
dgemm 

opti-
mized 

opti-
mized 

0.43 143 

Double/ 
Com-
plex 

576 cblas_ 
zgemm 

cblas_ 
zaxpy 

cblas_ 
zdotu 

103 179 

Double/ 
Com-
plex 

576 cblas_ 
zgemm 

opti-
mized 

opti-
mized 

88 153 

Float/ 
Com-
plex 

576 cblas_ 
cgemm 

cblas_ 
caxpy 

cblas_ 
cdot 

90 156 

Float/ 
Com-
plex 

576 cblas_ 
cgemm 

cblas_ 
zaxpy 

cblas_ 
zdotu 

76 132 

Low-Order LQG Results 
A visual comparison of the closed loop vs. open loop 

system can be found in Fig. 6. 

 
Figure 6: Instantaneous Point Spread Functions for Open-
loop vs. Closed-loop LLAMAS operation using Low-Or-
der LQG.  Ideal performance of the integrated system pro-
duces narrow Point Spread Functions, as seen in the right 
plot. 
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HIGH-ORDER LQG CORRECTION 
HO LQG Software Implementation 

The HO LQG algorithm is identical to the LO LQG al-
gorithm except the data type is different and the MKL func-
tions are the complex versions.  See Table 2.  The data is 
complex float for the HO LQG versus double real values 
for the LO LQG. The HO LQG consists of 576 modes. 

For high-order LQG control, we have elected to parallel-
ize the 576 6x6 matrix multiplies over 8 cores in the LLA-
MAS computer.  This results in a total LQG computation 
time of 23 microseconds, which compares favorably to (1) 
the current wavefront reconstruction time of 52 microsec-
onds for the Integrator Controller and (2) the desired frame 
time of 67 microseconds for a goal frame rate of 16 kHz.  
We have been able to close all HO LQG loops stably at 
frame rates up to 10 kHz.  In order to reach 16 kHz with 
HO LQG, it will be necessary to parallelize the algorithm 
further. 

NEXT STEPS 
1. Implement MKL multi-threading 
2. Continue optimizing the HO LQG algorithm 
3. Increase parallel processing with threads 
4. Investigate GPU or FPGA matrix multiplication 
5. Revisit Red Hat Tuning suggestions [7] 
6. Use profiling tools to identify further optimization  
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