
A MODEL-BASED SIMULATOR FOR THE LCLS ACCELERATOR
M. Gibbs∗, W. Colocho, J. Shtalenkova, A. Osman,

SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
The Linac Coherent Light Source (LCLS) at the SLAC

National Accelerator Laboratory is currently undergoing a
major upgrade. In order to facilitate the development of
new software that will be needed to operate the upgraded
machine, a simulator of the LCLS electron beam, and ac-
celerator devices that measure and manipulate the beam,
has been developed. The simulator is comprised of sev-
eral small ”services” that simulate diferent types of devices,
and provide an EPICS interface identical to the real con-
trol system. All of the services communicate with a central
beam line model to change accelerator parameters and re-
trieve information about the simulated beam.

MOTIVATION
SLAC has spent the majority of 2019 with the LCLS ac-

celerator oline while a new superconducting linear acceler-
ator is installed upstream of the existing normal-conducting
linear accelerator, and the original transport line from the
linac to the hard x-ray undulator line is replaced with two
new transport lines feeding two new undulator lines. This
will fundamentally change the structure of LCLS from a
”straight line” machine with one electron source and one
beam destination to a machine with two electron sources,
each of which can feed either a hard x-ray or soft x-ray un-
dulator line. A large number of high-level software appli-
cations used for the operation of the accelerator (including
applications to measure electron beam characteristics, au-
tomation tools to perform routine procedures, and tools to
align and calibrate beam-line devices) need modiication to
support multiple beam-lines, or new hardware. The hard-
ware installation schedule dictates that most of the software
modiications need to happen before hardware is installed
or connected to the EPICS control system.

An accelerator simulation system called Simulacrum was
created to give software developers a way to test their appli-
cations against a simulated electron beam using an EPICS
interface identical to what the real accelerator provides.

ARCHITECTURE
Simulacrum is a modular system, comprised of many in-

dependent device simulation services communicating with
a single accelerator model service (see Fig 1). Each device
service hosts the complement of EPICS process variables
(PVs) that applications use to interact with the device type.
When applications read or write to these PVs, the device ser-
vice can inform the model of changes to device parameters,
trigger a re-calculation of the simulated beam, and query
the model for the state of the beam at a particular location.
∗ mgibbs@slac.stanford.edu

IMPLEMENTATION
All services are written in Python 3, and use the PyZMQ

module [1] to communicate with the model service via Ze-
roMQ [2] messages over TCP. The services are typically
all run from one computer, but the TCP-based communica-
tion provides a path to running the simulator across several
computers, if the need arises.

Model Service
The model service is the only service that users must run.

It hosts an instance of Tao, an accelerator modelling appli-
cation that is part of the BMAD software toolkit for charged
particle and x-ray simulations [3]. The model service takes
a BMAD accelerator lattice deinition as input, and instan-
tiates an accelerator model. Because the model service is
in charge of keeping the lattice deinition, it is easy to sim-
ulate diferent accelerators, as long as their devices share
the same EPICS interface. This is routinely used to switch
between simulating the machine as it existed in 2018 to sim-
ulating the machine as it will exist when operations resume.

A request-response pattern is used to interact with the
model: the model service sends its Tao instance a command,
and a result is returned. This is the primary way other ser-
vices interact with the model: they send a Tao command via
ZeroMQ, the model service receives the command, runs it,
and replies with the result of the command. It is also possi-
ble to open an interactive terminal to send and receive Tao
commands - this is useful for debugging, and also allows
expert users to conigure parameters of the model that are
unavailable via EPICS, like misalignment of devices and
initial beam conditions.

In addition to the request-response communication, the
model service has a second communication channel that
operates using a publish-subscribe pattern. This channel
is used to broadcast frequently-updating beam parameters
(like trajectory) at 10 Hz. Any service can subscribe to these
broadcasts, and update PVs (like beam position monitor sig-
nals) in real time.

Finally, the model service uses the p4p module [4] to act
as a PVAccess server. It hosts a large NTTable PV that con-
tains the beam’s Twiss parameters at every element, along
with the length of the element, the element’s position along
the beam-line, and the 6x6 transfer matrix for each element.
This table is refreshed and re-published at 1 Hz.

Device Services
The device services are the clients of the model service,

sending Tao commands and receiving information about the
current state of the simulated devices or beam. When a de-
vice service starts, it queries the model service for a list of
all the devices the service will simulate (for example, a list

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPL04

Feedback Control and Process Tuning
TUCPL04

773

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Model Service

Tao 

Accelerator 

Model

Klystron 

Service

Magnet 

Service

Profile Monitor 

Service

Beam Position 

Monitor Service

X-Ray Pulse 

Energy Service

Collimator/

Stopper Service

PV

PV PV

PV

PV

PV

PV

PV

PV
PV

PV

PV
PV PV

PV

PV

PV

PV

PV

PV

PV

PV
PVPV

User Application
ZMQ

EPICS

Figure 1: Simulacrum is structured as many independent processes communicating with a beam physics model.

of all quadrupole magnets), as well as the initial state of
each of those devices. It then creates EPICS PVs for each
device, setting the values using the initial state from the
model.

The device services use the caproto [5] library to host
EPICS PVs. The services deine every PV needed to simu-
late one instance of the device type. Each PV can have getter
and setter methods attached that are run any time an EPICS
client reads or writes to the PV. These getters and setters
often send messages to the model service to fetch data, or
update the model parameters as device settings change. In
this way, the device services can be thought of as a transla-
tion layer that takes inputs in the form of EPICS operations
and translates them into a Tao command that the model uses,
then translates the results of the Tao command back into
changes in the EPICS PVs.

Another responsibility of a device service is to simulate
details of the hardware that are not considered by Tao. For
instance, the service that simulates LCLS klystrons imple-
ments a complex system of about 70 interlocks, and hosts
the PVs that are used to diagnose and reset interlock faults.

Device services have been written to simulate seven de-
vice types: beam position monitors, insertable proile moni-
tor screens, klystrons, magnets (including quadrupoles, cor-
rector dipoles, and bend dipoles), adjustable collimators,
beam stoppers, and a x-ray pulse energy measurement de-
vice. Additionally, a ”generic PV service” was built to host

static EPICS PVs. This service is mainly used to mock soft
IOCs at SLAC that store things like the results of emittance
measurements in PVs. The generic PV service is also a con-
venient place to host very simple, static versions of device
data for device types which have not yet been implemented
as services.

USE IN SOFTWARE DEVELOPMENT

One notable example of Simulacrum’s use in software
development has been the study of new features for Ocelot
[6], a platform for automated optimization of accelerator
performance. Ocelot allows users to deine an objective
function that maps accelerator device settings to a target
output. The optimizer uses numerical algorithms to search
this multidimensional parameter space deined by the ob-
jective function for optima by iteratively changing device
parameters and sampling the objective function. At LCLS,
Ocelot is used to optimize FEL pulse intensity by manipulat-
ing quadrupole magnets. Simulacrum was used to simulate
interactions with the LCLS controls system during devel-
opment of the Gaussian process optimization method over
the accelerator downtime. Simulacrum was also used to de-
velop the Ocelot interface for the SPEAR3 accelerator con-
trol system; at SPEAR3 Ocelot was used to minimize Tou-
schek lifetime using the skew quadrupole magnet comple-
ment.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPL04

TUCPL04
774

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning



A second example involves beam-based alignment
(BBA) of LCLS undulator segments. A complex procedure
executed by a software application is used to straighten the
electron beam trajectory as it travels through the FEL undu-
lator [7]. To verify that the application properly implements
the BBA procedure, known misalignments of undulator seg-
ments can be injected into the accelerator model. The BBA
application is then run against the simulator, and the cal-
culated corrections are compared against the injected mis-
alignments. If the two match, it is a strong indication that
the software is working correctly.

FUTURE USES
Simulacrum is also useful as a training tool. Accelera-

tor operators undergo exhaustive training in order to under-
stand and interact with the myriad of systems and compo-
nents necessary to operate the accelerator safely and efec-
tively. Operators can use completely unmodiied accelera-
tor software to interact with Simulacrum in the same way
as the real machine. This provides a safe, convenient way
for new operators to learn how to operate the machine, even
when the real machine is not available. Some members of
the accelerator operations group at SLAC are in the process
of creating training scenario scripts that launch an instance
of Simulacrum, then set up initial conditions for the sce-
nario.

There is also a plan to use the simulator for community
outreach. A simpliied graphical user interface has being
created to give the general public a ”control room operator
experience” during SLAC’s Community Day. Groups will
perform two of the most common LCLS operations tasks

(beam steering and FEL tuning), get scored, and can com-
pete for a place on a high score board.

ACKNOWLEDGMENTS
The authors thank Greg White and Timothy Maxwell

at SLAC for the initial conversations that inspired Simu-
lacrum, Christopher Mayes (SLAC) and David Sagan (Cor-
nell) for their help with Tao and BMAD, as well as Daniel
Allan (BNL), Thomas Caswell (BNL), and Ken Lauer
(SLAC) for their help with caproto.

REFERENCES
[1] B. E. Granger and M. Ragan-Kelley. (2019). PyZMQ Docu-

mentation, https://pyzmq.readthedocs.io

[2] The ZeroMQ Authors. (2019). ZeroMQ, https://zeromq.
org

[3] D. Sagan, “Bmad: A relativistic charged particle simulation
library,” Nucl. Instrum. Meth., vol. A558, no. 1, pp. 356–359,
2006, Proceedings of the 8th International Computational Ac-
celerator Physics Conference, issn: 0168-9002.
doi:10.1016/j.nima.2005.11.001.

[4] M. Davidsaver. (2019). PVAccess for Python (P4P), https:
//mdavidsaver.github.io/p4p/

[5] D. Allan. (2019). caproto: a pure-Python Channel Access pro-
tocol library, https://caproto.github.io/caproto/
index.html

[6] S. Tomin et. al, “Progress in Automatic Software-Based Opti-
mization of Accelerator Performance,” Proceedings of IPAC
2016, Busan, Korea, May 8-13, 2016,

[7] H-D. Nuhn et. al, “LCLS Undulator Commissioning, Align-
ment, and Performance,” Proceedings of FEL 2009, Liver-
pool, UK, August 23-28, 2009, paper THOA02, pp.714-721.

doi:10.18429/JACoW-IPAC2016-WEPOY036

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPL04

Feedback Control and Process Tuning
TUCPL04

775

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


