
DATA EXPLORATION AND ANALYSIS WITH Jupyter NOTEBOOKS
H. Fangohr∗1, M. Beg, M. Bergemann, V. Bondar, S. Brockhauser2,3, C. Carinan, R. Costa,

F. Dall’Antonia, C. Danilevski, J. C. E, W. Ehsan, S. G. Esenov, R. Fabbri, S. Fangohr, G. Flucke,
C. Fortmann4, D. Fulla Marsa, G. Giovanetti, D. Goeries, S. Hauf, D. G. Hickin, T. Jarosiewicz5,
E. Kamil, M. Karnevskiy, Y. Kirienko, A. Klimovskaia, T. A. Kluyver, M. Kuster, L. Le Guyader,
A. Madsen, L. G. Maia, D. Mamchyk, L. Mercadier, T. Michelat, J. Möller, I. Mohacsi, A. Parenti,

M. Reiser, R. Rosca, D. B. Rueck, T. Rüter, H. Santos, R. Schaffer, A. Scherz, M. Scholz, A. Silenzi,
M. Spirzewski5, J. Sztuk, J. Szuba, S. Trojanowski5, K. Wrona, A. A. Yaroslavtsev, J. Zhu

European XFEL GmbH, Schenefeld, Germany
J. Reppin, F. Schlünzen, M. Schuh, DESY, Hamburg, Germany

E. Fernandez-del-Castillo, G. Sipos, EGI Foundation, Amserdam, Netherlands
T. H. Rod, J. R. Selknaes, J. W. Taylor, ESS, Copenhagen, Denmark

A. Campbell, A. Götz, J. Kieffer, ESRF, Grenoble, France
J. Hall, E. Pellegrini, J. F. Perrin, ILL, Grenoble, France

1 also at University of Southampton, Southampton, United Kingdom
2 also at University of Szeged, Szeged, Hungary

3 also at Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
4 also at Max-Planck-Inst. for Evolutionary Biology, Plön, Germany

5also at NCBJ, Otwock, Poland

Abstract
Jupyter notebooks are executable documents that are dis-

played in a web browser. The notebook elements consist
of human-authored contextual elements and computer code,
and computer-generated output from executing the computer
code. Such outputs can include tables and plots. The note-
book elements can be executed interactively, and the whole
notebook can be saved, re-loaded and re-executed, or con-
verted to read-only formats such as HTML, LaTeX and PDF.
Exploiting these characteristics, Jupyter notebooks can be
used to improve the effectiveness of computational and data
exploration, documentation, communication, reproducibil-
ity and re-usability of scientific research results. They also
serve as building blocks of remote data access and analysis
as is required for facilities hosting large data sets and ini-
tiatives such as the European Open Science Cloud (EOSC).
In this contribution we report from our experience of using
Jupyter notebooks for data analysis at research facilities, and
outline opportunities and future plans.

INTRODUCTION
Data analysis and data science studies often begin with

interactive exploration, often already during the experiment.
Short feedback cycles are crucial for this: the person ex-
ploring the data should be free to quickly try different data
analysis options and see the results with minimal mental
overhead. As the analysis progresses, the focus shifts to
recording and communicating findings and how they were
reached. Whether someone shares their analysis or keeps
it for their own reference, they will need an explanation of
∗ hans.fangohr@xfel.eu

what was done, and a record of the code used and the results,
to establish confidence and to serve as a base for further
work.

Digital notebook interfaces are an increasingly popular
way to meet these needs. A notebook is a document combin-
ing free text with code which can be interactively executed,
producing results inline which are saved as part of the note-
book. Such interfaces have been familiar in computational
mathematics software such as Mathematica and SageMath
for many years. More recently, notebooks have spread to gen-
eral programming and data science, in particular as Jupyter
notebooks (formerly IPython notebooks) [1, 2].

Figure 1 shows an example Jupyter notebook introducing
some of the capabilities. This example is available online [3],
where it can also be interactively executed using the Binder
service [4].

Jupyter is a notebook interface which can work with vari-
ous programming languages, thanks to backends known as
kernels which can be installed individually. Jupyter note-
books are viewed and edited through an interface in the web
browser. This can be run by an individual on their own
computer, but it is also relatively straightforward to provide
remote access to Jupyter running on a server. Jupyter note-
books are typically used through common web browsers, but
they can also be viewed and edited in a desktop application
called nteract [5]. Very recently, a useful review on col-
laborative data science with Jupyter notebooks has become
available [6].

In this paper, we discuss our experiences of using Jupyter
notebooks at a range of research facilities and will illustrate
this with use cases from European XFEL (EuXFEL) to high-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

User Interfaces, User Perspective, and User Experience(UX)
TUCPR02

799

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

In [1]:

Mathematical model: We would like to understand

Code: Here is an implementation:

!(", #,$) = exp(−#") cos($")

In [2]:

Interactive exploration: We can execute the function for values of , and :" # $

In [3]:

Or produce a plot (in a function plot_f so it can be re-used for different
parameters):

In [4]:

In [5]:

Using interaction widgets, we can re-trigger execution of the plot_f function via
GUI elements such as sliders.

In [6]:

Conclusion: We observe that parameter is responsible for damping, and for the
frequency.

$

Out[3]: 0.48888574340060287

alpha 1.50

omega 45.50

Import Python and libraries we need later
%matplotlib inline
from numpy import exp, cos, linspace
import pylab
from ipywidgets import interact

def f(t, alpha, omega):
 """Computes and returns exp(-alpha*t) * cos(omega*t)"""
 return exp(-alpha * t) * cos(omega * t)

f(t=0.1, alpha=1, omega=10)

def plot_f(alpha, omega):
 ts = linspace(0, 5, 500) # 500 points in interval [0, 5]
 ys = f(ts, alpha, omega)
 pylab.plot(ts, ys, '-')

plot_f(alpha=0.1, omega=10) # call function and create plot

interact(plot_f, alpha=(0, 2, 0.1), omega=(0, 50, 0.5));

Figure 1: An example of a Jupyter notebook showing that tex-
tual description (including LATEX commands) can be mixed
with code and outputs such as numbers and graphs, produced
by executing the code. In the last cell, we have created two
sliders for the parameters 𝛼 and 𝜔 which can now be varied
by moving the sliders with the mouse or entering numbers
to the right of the slider. As the numbers are changed or the
slider is moved, the plot is re-calculated and updated in real
time. This notebook example can be inspected and executed
in the cloud using a web browser [3].

light how notebooks can be useful for science at large-scale
experimental facilities with high volumes of data.

DRIVING ANALYSIS FROM NOTEBOOK
WITH TAILORED PYTHON LIBRARY
The Spectroscopy & Coherent Scattering (SCS) instru-

ment at EuXFEL makes extensive use of Jupyter notebooks
on a daily basis, both during user experiments and during
commissioning of the instrument components, as well as
weeks or months after the data were recorded for more de-
tailed offline analysis. To avoid long code snippets in note-
books, we developed a Toolbox package [7] that comprises
several functions that are used on a daily basis at the in-
strument. The package is built on the facility’s library for
reading data files and provides higher level functionality
tailored for the SCS instrument.

An example of typical analysis and use of notebooks is
presented in Fig. 2. One well-established technique at SCS
is X-ray absorption spectroscopy (XAS): the photon energy
of the Free Electron Laser (FEL) beam is monochroma-
tized by a grating and varied by scanning its angle. The
X-ray pulse energy is measured before and after interaction
with a sample, thus allowing for energy-resolved absorption
measurements. The incoming X-ray pulse energy (𝐼0) is
measured by a gas monitor (XGM). The transmitted pulse
intensity (𝐼1) is then measured by the Transmitted Intensity
Monitor (TIM): fluorescence induced by the X-ray on a CVD
diamond screen is detected by Micro-Channel Plates (MCP).
The data produced represent a digitized time trace of the
MCP, consisting of peaks proportional to the transmitted
pulse intensity. As a first step of analysis, the XGM data,
monochromator data and TIM data need to be synchronised
by train id, a unique integer used to label the X-ray bunches
arriving with a frequency of 10Hz. Each train contains up
to 2700 X-ray pulses. XGM and TIM data also have to be
aligned by pulse id within the train. Secondly, the peak in-
tegration parameters of the TIM digitized traces must be
checked and integration is performed. Finally, the absorp-
tion, defined as − log(𝐼1/𝐼0), is computed and binned as a
function of the monochromator energy. These three steps
are condensed into three lines of code, as seen in Fig. 2.

Due to the interactivity of the notebook, one can make
sanity checks at each step involved, for instance to display
and adjust the integration parameters of the TIM trace, or
to change which detector is used as either 𝐼0 or 𝐼1, or to
compute different XAS spectra for specific pulses in the
bunch train to see changes induced by the X-rays.

COLLECTION OF NOTEBOOK RECIPES
FOR TYPICAL TASKS

The Materials Imaging and Dynamics instrument (MID)
uses the EuXFEL beam with 10 trains per second and cur-
rently up to 300 X-ray pulses per train. With a 1 million
pixel detector and 2 bytes per pixel for raw data, a dataset of
over one 1 TB is measured at MID just from that detector in
less that 3 minutes.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

TUCPR02
800

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 2: Example notebook as used at the SCS instrument.

Crucial for the success of every experiment is reliable,
efficient and flexible data analysis that allows scientists to
interpret the data and to make decisions about the next steps
of the experiment through the course of a five-day beamtime.

For each experiment – which is also referred to as a pro-
posal – a dedicated proposal folder is created with subdi-
rectories for experimental data, analysis scripts, preliminary
analysis results, etc. Additionally, we pilot for MID an ap-
proach where each proposal folder contains an independent
copy of the software environment to run the Jupyter note-
books, so that analysis code will not be broken later by an

unexpected update to a new version of a library in a cen-
trally managed software environment. This approach further
allows to add additional software on top of the standard soft-
ware environment with specialized programs for the current
experiment.

So far, the software environment has been provided as
an Anaconda distribution installation, but we are piloting
the use of Singularity [8] for software provision at EuXFEL:
multiple Singularity images (each being a single file) can
be used and archived to preserve changing or tailored soft-
ware environments. We also find that the many files that
come with a typical Anaconda distribution put stress on
the facility’s file system that was desiged to handle large
files, not many very small files: this problem disappears if
the Anaconda distribution is installed inside the Singularity
container.

In order to document the building blocks of a successful
data analysis and to make them accessible to scientists who
are not software experts, we provide a collection of exam-
ple Jupyter notebooks for the users of the MID instrument.
Each notebook deals with a particular data analysis task.
Alongside the actual code, detailed information explains
the theory behind the analysis and how it is translated into
code. Markdown cells allow for emphasising and structuring
plain text and including mathematical formulae and tables,
which makes it easier to understand the different steps. Each
user group at MID gets a copy of these notebooks in their
proposal directory on the Maxwell cluster, where they can
execute the examples and copy code snippets to serve as a
starting point for their own analyses.

The MID scientists also use Jupyter notebooks as a form
of electronic logbooks to keep a chronological record of their
experiments and analyses. While the ELOG software [9]
is widely used at European XFEL, the convenience of in-
cluding executable code and its output in Jupyter notebooks
make them desirable as an alternative logbook. A number of
extensions enhance Jupyter for this purpose, including pro-
vision of a table of contents in the notebook interface, and
allowing the user to collapse (’fold’) parts of the notebook
based on headings or code structure – this makes navigation
of long notebooks more convenient.

ONLINE DATA ANALYSIS – LIVE
ANALYSIS FROM DATA STREAM

The success of an experiment at a photon facility can de-
pend on fast decision making capability during the beamtime,
often a time scale of seconds for (near-realtime) feedback
is desired to adjust experimental parameters. Due to the
versatility of experiments, the requirements for this kind of
feedback can vary significantly from experiment to experi-
ment.

During the experiment, trains of data are written to disk
and (parts of) the data can simultaneously be made accessible
through a ZeroMQ-stream over the network [10] for near-
realtime analysis on dedicated computers. Here we outline a

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

User Interfaces, User Perspective, and User Experience(UX)
TUCPR02

801

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

solution to provide a flexible configuration of online analysis
configurations [11].

Online analysis routines are broken down into small units
of analysis and plotting functionality which are implemented
in a pool of software modules (here Python classes) from
which the a combination of tools can be selected. The class
objects can provide statistical information like histograms or
fits of probability distributions, and trends and correlation
plots of experiment parameters like intensity or contrast
values etc. Each class produces (at least) one graphical
representation of the output.

We have found that Jupyter notebooks can be used as
a framework for such online data analysis to gather and
execute these analysis and visualisation tools from the pool
and display the results (see Fig. 3 for an example).

Matplotlib is used to create the main figure for display-
ing the results. The figure consists of a grid of axes where
single plots can span multiple columns and rows of the grid
to increase the readability and to emphasize particular in-
formation. The axes handles are passed upon instantiation
to the main class of each analysis tool. This class further
has to provide a method that creates and updates the graphs.
Additional optional arguments can be passed to set specific
parameters for each analysis routine.

Data access is provided through a reader class object that
receives data from the ZeroMQ-stream. The analysis classes
are instantiated with the same reader-class instance as first
argument to ensure that every analysis routine in the list of
selected analysis instances uses the same data. A copy of
the data itself is accessible for the analysis classes through
properties of the reader instance.

Figure 3: A section of the main figure of an online data
analysis Jupyter notebook, which – when used during an
experiment – updates in near-real time. The graphs show
a module of the AGIPD detector (first row), histograms of
pulse intensities and the average scattering intensity as a
function of bunch train id (second row) and the distribution
of photon events (third row).

After setting up the figure and instantiating the reader and
the analysis class instances, an infinite loop is started. In
every iteration, the reader fetches and processes data from
the stream. Then, every analysis-class instance is called to
perform its analysis and update its graphs. The loop can
be stopped by interrupting the kernel in the notebook, for
example to modify the selection of analysis classes and thus
plots before restarting the live display.

Jupyter notebooks may thus present an attractive user
interface for such flexible and modular online analysis soft-
ware – we believe the flexibility to re-configure the online
analysis without expert support is an attractive feature of the
described approach.

DETECTOR CALIBRATION AND
NOTEBOOK-AS-A-SCRIPT APPROACH
From raw detector data, best estimates of physical quan-

tities such as photons per pixel are generated as a facility
service [12]. One of EuXFEL’s Megapixel detectors can
produce 10 − 15 GB/s amounting to Petabytes of data for
the entire stay of a user group. In order to process these data
volumes efficiently, file-based calibration is executed concur-
rently on the Maxwell HPC cluster via SLURM scheduling.

The various steps in the correction and calibration of
stored data are defined using Jupyter notebooks: the nec-
essary combination of calls of the processing library are
assembled in a Jupyter notebook so that the calibrated data
set is computed as the notebook execution progresses (see
Fig. 4 left). As part of the processing, diagnostic plots are
created in the notebook in the appropriate places. One par-
ticular advantage of this notebook-as-a-script approach is
that it offers the detector scientists a convenient tool for
rapid prototyping and refinement of calibration methods,
especially as much of the feedback needed to validate and
evaluate these methods is in the form of plots, which can
be displayed inline. Therefore, Jupyter notebooks enable a
versatile production and development environment for data
calibration pipelines, which are tailored to individual detec-
tor models. Each notebook defines a set of input parameters
using nbparameterise [13] relating to detector settings, cali-
bration options and data access. The initial default values are
adjusted by an expert user who runs the notebook through a
dedicated command-line tool. Facility users can also trigger
the calibration pipeline through a web service.

Besides the calibrated data, each execution of a notebook
also produces a document with plots and tables as an auto-
matically generated report on data quality (Fig. 4 right). The
report functionality takes advantage of the Jupyter ecosys-
tem: the notebook defining the pipeline is converted into
a PDF file including the output and notes, structured by
Markdown headings. This avoids the need to mix code for
assembling a report into the calibration and plotting routines.
Specifically, the conversion uses nbsphinx [14] to integrate
with the Sphinx documentation tool, which uses LATEX to
produce a PDF.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

TUCPR02
802

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 4: Example from notebook-as-a-script approach.
(Left): notebook with calibration pipeline instructions.
(Right): auto-generated report from executing notebook.

CONDUCTING SIMULATIONS STUDIES
FROM NOTEBOOK

SPB/SFX is EuXFEL’s instrument for single particles,
clusters, and biomolecules and serial femtosecond crystal-
lography. The start-to-end simulation platform SIMEX [15]
was developed to simulate various types of experiments per-
formed at advanced photon sources including synchrotron
radiation and XFEL facilities. In a start-to-end simulation,
every part of the experiment from the photon source to the
photon detector, including the X-ray optical beam shaping
and the interaction with the sample, is simulated such that
the effects of the source spectral, temporal and spatial struc-
ture, X-ray optical components, and radiation damage to the
sample are taken into account.

To simplify the usage of the platform, we implemented a
unified API in a Python library for the users and beamline
scientists to conduct the requested simulation effectively.
With the help of Jupyter notebooks, the simulation platform
can be easily exposed as an online service. Thus, there is no
need for the users to install the simulation platform locally,
to deal with the complicated dependencies or to change
their operating systems. Some of the compute-intensive
simulations such as particle in cell, molecular dynamics
– to describe the photon-matter interaction process – and
diffraction simulations for large atomic systems, require high
performance computing resources. The Jupyter notebook-
based online-simulation service provides a solution for those
users who lack the resources to perform the simulation.

At every step, the simulation can be parameterized and
executed in the Jupyter notebook as shown in Fig. 5. The
results can be displayed and saved in each step for users to
adjust the parameters immediately.

BLENDING GUI-DRIVEN AND SCRIPTED
DATA ANALYSIS

There are different styles and user interfaces for data anal-
ysis and data exploration [16]:

Step 2: Propagation through beamline

Import beamline for WPG

Beamline parameters are set by a WPG beamline script (Example
(https://wpg.readthedocs.io/en/latest/tutorials/1/Tutorial_case_1.html#propagation-through-crls-optics)). There are also some beamline
examples in $SIMEX_INSTALL/PYPATH , which can be imported like this:

In [16]:

Propagator setup

In [17]:

In [18]:

In [19]:

In [40]:

from wpg.optical_elements import Use_PP
import numpy
import os
#from s2e.prop.propagate_s2e import MIRROR_DATA_DIR as mirror_data_dir
from prop.propagate_s2e import MIRROR_DATA_DIR as mirror_data_dir

def get_beamline():
 """ Setup and return the WPG.Beamline object representing the SPB/SFX nanofocus beamline (KB mirrors
).

 :return: beamline
 :rtype: wpg.Beamline
 """

 # Distances
 distance0 = 246.5
 distance1 = 683.5
 distance = distance0 + distance1

 # Focal lengths.
 f_hfm = 3.0 # nominal focal length for HFM KB
 f_vfm = 1.9 # nominal focal length for VFM KB
 distance_hfm_vfm = f_hfm - f_vfm
 distance_foc = 1. /(1./f_vfm + 1. / (distance + distance_hfm_vfm))

 # Mirror incidence angles
 theta_om = 3.5e-3 # offset mirrors incidence angle
 theta_kb = 3.5e-3 # KB mirrors incidence angle

 # Mirror lengths
 om_mirror_length = 0.8;
 om_clear_ap = om_mirror_length*theta_om

 kb_mirror_length = 0.9;
 kb_clear_ap = kb_mirror_length*theta_kb

 # Drifts.
 drift0 = optical_elements.Drift(distance0)
 drift1 = optical_elements.Drift(distance1)
 drift_in_kb = optical_elements.Drift(distance_hfm_vfm)
 drift_to_foc = optical_elements.Drift(distance_foc)

 # Mirror apertures.
 ap0 = optical_elements.Aperture('r','a', 5.0e-4, 5.0e-4)
 ap1 = optical_elements.Aperture('r','a', om_clear_ap, 2*om_clear_ap)
 ap_kb = optical_elements.Aperture('r','a', kb_clear_ap, kb_clear_ap)

 # Mirror definitions.
 hfm = optical_elements.Mirror_elliptical(
 orient='x',
 p=distance,

Out[19]: 0

 Plotting intensity map.
R-space

<Figure size 432x288 with 0 Axes>

from prop import exfel_spb_kb_beamline
print_contents(exfel_spb_kb_beamline.__file__)

propagation_parameters = WavePropagatorParameters(beamline=exfel_spb_kb_beamline)

propagator = XFELPhotonPropagator(parameters=propagation_parameters,
 input_path=source_path,
 output_path='prop_out.h5')

return: 0 if WPG returns successfully, 1 if not.
propagator.backengine()

prop_analysis.plotIntensityMap()

Figure 5: Driving a simulation through the Jupyter notebook:
An example of the photon propagation step of SIMEX, show-
ing how the input and output of each step can be displayed
and saved.

(i) data analysis driven by scripts: The author of a script
can, in principle, carry out any analysis operation they like
as they have a general purpose programming language to
request or even implement the particular operation. Two
advantages of this approach are its generalism and repro-
ducibility: any problem can be analysed and scripts can be
re-executed to repeat the same analysis. Disadvantages of
the method are the strictly sequential execution, the lack of
modularity and the inherent separation of the script from
documentation and outputs.

(ii) data analysis driven through a GUI: Another approach
is to create a graphical user interface (GUI) where the user
clicks buttons and other graphical elements to control data
analysis. This can work well if the data analysis task is
clearly defined and does not change frequently; it is a con-
venient method to inspect data sets with a fixed structure.
It is advantageous that using the a GUI does not require
any programming skills. However, it is difficult to change
the analysis that is pre-defined in the GUI. Furthermore,
GUI-Applications usually lack the mechanism or the im-
plementation to capture a full record of GUI-events, which
renders GUI-based analysis generally not reproducible.

Whether approach (i) or (ii) is preferred is determined
by personal taste and the data analysis task at hand – both
extremes have their justified place.

Using notebooks is similar to approach (i) in that analysis
steps can be defined by writing computer code. However,
where pre-defined notebooks are provided, it also shows
some similarity to the GUI approach (ii): by providing a
template notebook that already contains the right analysis
commands, a user without programming knowledge can use
the notebook (by executing one cell after another) without
having to write code themselves.

Furthermore, through a library known as Jupyter Wid-
gets [17], it is possible to create GUI elements inside a
Jupyter notebook. It is thus possible to have a blended
approach that allows to change from scripted analysis to
GUIs and back within the notebook. We have used this ap-
proach in karabo_data_interactive, a tool to interactively
browse through images from X-ray pixel detectors at Euro-
pean XFEL, facilitating exploratory analysis in notebooks
(Fig. 6).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

User Interfaces, User Perspective, and User Experience(UX)
TUCPR02

803

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: An example of a the karabo_data_interactive
widget. Users can create the widget from a large dataset,
and then interactively browse through different frames of
detector images, change the type of image being looked at
(e.g. gain or mask), zoom/pan the image, and change the
colour range to bring out different details in the data.

We note that the reproducibility of notebooks (i.e. the
ability to re-compute the same results by re-executing the
code) is currently broken when widgets are used: the widget
may require the user to repeat the clicks carried out before.
Solutions are discussed in the Jupyter community but not im-
plemented yet: if the widgets’ state was saved together with
the notebook, and the widget state could be recreated when
the notebook is loaded, this problem could be addressed.

DOCUMENTING A SOFTWARE LIBRARY
karabo_data is a Python library [10] that provides a conve-

nient API for accessing data stored in files, working with the
specific layout of HDF5 files created by EuXFEL’s data ac-
quisition system. It also offers some support for processing
the data, particularly assembling images from X-ray pixel
detectors composed of several separate modules. The library
is open source [18], and is used by both external user groups
and research groups within the facility.

Jupyter notebooks form an important part of the docu-
mentation for karabo_data, presenting executable examples
for various use cases. Compared to presenting examples
as scripts, notebooks allow for richer annotation, structur-
ing the document using headings, and showing output such
as plots inline. It is also easy for the library developers to
validate a new feature interactively in a notebook, and then
refine this into an example document.

Online documentation for karabo_data (https://karabo-
data.readthedocs.io/en/latest/) is built with Sphinx, and nb-

sphinx [14] is used to integrate notebooks seamlessly into
this, including rich output.

nbval [19] is also used to execute the example notebooks
as part of the library’s test suite. If running the examples
produced an error, this would be highlighted as a failing test.
This does not replace the test suite, but provides an extra
layer of assurance based on realistic use cases.

Documentation in Jupyter notebooks can further exploit
the Binder service [20] to provide the documentation note-
books as live and executable notebooks that users can exe-
cute in an anonymous short-lived environment in the cloud:
being able to experiment interactively with a library to ex-
plore its capabilities, and to start from ready-made simple
examples, can be a very effective way of learning about it
quickly. To use such interactive documentation, only a web
browser is required (no software installation) as the Binder
service creates the required software environment on de-
mand. A simple prototype of notebook execution through
Binder is available in reference [3]; whereas a real-world
example of executable documentation in computational sci-
ence can be found, for example, in reference [21].

JupyterHub AND GENERIC RESEARCH
ENVIRONMENTS

Jupyter notebooks are increasingly popular with facility
staff and facility users. The case studies above describe some
of the infrastructure and set-ups. For generic data analysis
in Jupyter notebooks, the facility provides karabo_data (see
above) as a Python module to provide convenient access to
EuXFEL data files. This library makes facility data available
as objects from standard Python data science libraries, such
as numpy arrays, pandas data series and dataframes, and
xarray arrays [22].

A JupyterHub installation is provided [23]: A JupyterHub
instance appears to the user as a website from which note-
books can be created, opened, used and saved. Typically
this is connected to the user’s local account at the facility.
For the JupyterHub at DESY/EuXFEL, users authenticate
with their normal account, and have access to files in their
home directory and to their experiment data.

For compute-intensive notebooks, it is possible to allocate
dedicated nodes with user-specified hardware configuration
(e.g. GPUs) from the Maxwell computer cluster to a running
JupyterHub session. Substantial resources of the cluster can
be consumed directly from the notebook for example through
slurm-magic and dask-clusters. For interactive sessions that
are dominated by the users contemplating the code or the
output from a computation, a JupyterHub session can be
started on a shared node.

As the JupyterHub installation appears as a website, it can
be used remotely from anywhere on the Internet: this is of
particular value as due to the size of data sets created, the
analysis needs to take place remotely.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

TUCPR02
804

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

VISION FOR EUROPEAN
OPEN SCIENCE CLOUD

As part of the Photon and Neutron Science Open Science
Cloud project PaNOSC [24] we are working towards a data
analysis framework that allows remote interactive data anal-
ysis of selected data sets over the Internet. A backbone of
this vision are Jupyter notebooks that encapsulate the partic-
ular analysis proceduces for different types of experiments,
and which can be saved but also re-executed through access
points in the European Open Science Cloud (EOSC).

An important use case for this framework is the repro-
ducible re-execution of data analysis for publications which
are, for example, based on research facility data: We suggest
to describe the analysis in a Jupyter notebook, and archive the
notebook with required software as metadata together with
the (raw or preprocessed) data for the publication. Once fully
developed, the EOSC could provide access to a JupyterHub
instance in which scientists (and in principle the interested
public) can find and access select publications, and then
access and re-execute the notebooks of the publication: this
execution would re-create the central statements of the paper,
such as tables, numbers and figures.

This reproducibility is of particular value to effective sci-
entific research: if the study can be reproduced in a cloud
environment within minutes of finding it on the EOSC por-
tal, and all required analysis steps are transparently available
– for example through such a notebook – then it is a matter
of minutes or hours for scientists to modify and extend and
thus re-use this study to work towards new research insights.
For the vast majority of existing published results it can
take months to reproduce the results in the absence of such
metadata and infrastructure.

For the technical realisation of this vision, we need to
execute those notebooks in a computational environment
that has either been preserved from when it was created (such
as a Docker or Singularity container), or in an environment
that can be recreated on the fly (as is done in the BinderHub
[4,20] approach). Furthermore, the original data set needs
to be accessible from this environment: small data sets can
be transferred to where the computation is to take place, but
for larger data sets the only feasible option is to perform the
computation physically close to the data set [25].

To turn this vision into reality – or in the first instance
work towards a prototype to demonstrate it – we need buy-in
from scientists to produce such reproducible analysis. In
principle, there is a an understanding that any scientific work
should be reproducible. In practice, this is not always the
case: journals have not enforced the publication of detailed
analysis steps and authors have not always pushed to re-
veal their particular analysis algorithms and workflows with
all details. However, increasingly, journals and research
councils push for the publication of all data analysis steps
(see for example Nature’s policy on reproducibility require-
ments for new submissions [26] which essentially makes it
compulsory for every author to be able to reveal their pre-
cise analysis steps on request by another reader). As stated

in [27], programs used for data analysis implement algo-
rithms which contain the scientific models. While models
can be described in scientific articles, only the implemen-
tation describes the management of all corner-cases and is
hence needed for reproducibility: only open-source software
allows full reproducibility.

It is furthermore required that scientists are technically
able and have the resources to express their analysis in
Jupyter notebooks. For most scripted processes, this should
be possible (the notebook may just call the script in the
most extreme scenario). In cases the scientist need access
to specific data analysis tools and corresponding graphical
user interfaces, an alternative solution is proposed by the
PaNOSC project which provides remote access to graphical
terminals.

From the user perspective of such a service, it will only
be necessary to operate a web browser to re-execute the data
analysis: the required software installation and provision is
done on the server side.

DISCUSSION AND SUMMARY

We have reported a number of different and overlapping
use cases that exploit Jupyter notebooks and the associated
tools from Project Jupyter. The notebook is an exciting tech-
nology, user interface and tool that is increasingly attracting
users in academia, industry and commerce.

We discuss some of the challenges associated with
projects moving as quickly as Jupyter.

We have highlighted some use cases of the Binder ser-
vice [3, 4, 20], for example to provide interactive documen-
tation and reproducible publications, but also interactive
training environments that do not require software installa-
tion at the user side. While this offers exciting opportunities
and opens up avenues for better and more effective science,
there is currently no sustainable model to provide the re-
quired cloud compute resources. At the moment, the cloud
computing resources for the mybinder service [20] are spon-
sored by a few companies, and the operation is carried out
voluntarily by members of Project Jupyter. We hope that
Binder [4] services will emerge as part of the European
Open Science Cloud, or indeed – potentially with required
authentication – from larger research institutions such as
universities, facilities, research councils or publishers.

We also note that interactive plotting in notebooks is oc-
casionally brittle: not all browsers support all packages,
occasionally a feature works in the classic notebook but not
in the new interface called JupyterLab.

In summary, we believe that there are many use cases
where Jupyter notebooks and the Jupyter ecosystem as a
computational tool and method can make research more
effective. We have shared use cases and a vision for better
science with better software infrastructure for the future.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

User Interfaces, User Perspective, and User Experience(UX)
TUCPR02

805

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ACKNOWLEDGEMENTS
We acknowledge financial support from the Open-

DreamKit Horizon 2020 European Research Infrastructures
project (#676541) and the Photon and Neutron Open Science
Cloud (PaNOSC) project (#823852).

REFERENCES
[1] F. Pérez and B. E. Granger, “IPython: a system for

interactive scientific computing,” Computing in Science and
Engineering, vol. 9, no. 3, pp. 21–29, May 2007.

[2] T. Kluyver et al., "Jupyter Notebooks -- A Publishing
Format for Reproducible Computational Workflows," in
Positioning and Power in Academic Pub-lishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt, Ed.
Amsterdam, Netherlands: IOS Press BV, 2016, pp. 87–90.

[3] H. Fangohr, “Jupyter notebook demo: basics, widgets and
Binder, 10.5281/zenodo.3463132,” https://github.com/fan-
gohr/jupyter-demo, Sep 2019.

[4] Project Jupyter et al., “Binder 2.0 - reproducible, in-
teractive, sharable environments for science at scale,”
in Proceedings of the 17th Python in Science Conference.
SciPy, 2018. doi:10.25080/majora-4af1f417-011

[5] K. Kelley, S. Abdalla, L. Geiger, S. Sturgis, J. Detlefs, and
contributors, “nteract,” https://nteract.io/.

[6] K. M. Mendez, L. Pritchard, S. N. Reinke, and D. I.
Broadhurst, “Toward collaborative open data science in
metabolomics using jupyter notebooks and cloud computing,”
Metabolomics, vol. 15, no. 10, Sep. 2019.
doi:10.1007/s11306-019-1588-0

[7] “Code toolbox for SCS instrument at European XFEL,”
https://in.xfel.eu/gitlab/SCS/ToolBox

[8] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, pp. 1–20, 05 2017.
doi:10.1371/journal.pone.0177459

[9] S. Ritt, “Elog,” https://elog.psi.ch/elog/.

[10] H. Fangohr et al., “Data Analysis Support in Karabo at Eu-
ropean XFEL,” in Proc. of 16th Int. Conf. on Accelerator
and Large Experimental Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct 2017, pp. 245–252.
doi:10.18429/JACoW-ICALEPCS2017-TUCPA01

[11] M. Reiser, Ph.D. dissertation, 2019.
[12] M. Kuster et al., “Detectors and calibration concept for

the european xfel,” Synchrotron Radiation News, vol. 27,
no. 4, pp. 35–38, 2014.
doi.org/10.1080/08940886.2014.930809

[13] T. Kluyver, “nbparameterise,” https://github.com/
takluyver/nbparameterise

[14] M. Geier and contributors, “nbsphinx,” https://
github.com/spatialaudio/nbsphinx

[15] C. Fortmann-Grote et al., “Start-to-end simulation of single-
particle imaging using ultra-short pulses at the European X-
ray Free-Electron Laser,” IUCrJ, vol. 4, no. 5, pp. 560–568,
Sep. 2017.

[16] M. Beg, R. A. Pepper, and H. Fangohr, “User interfaces
for computational science: A domain specific language
for OOMMF embedded in Python,” AIP Advances, vol. 7,
no. 5, p. 056025, May 2017. doi:10.1063/1.4977225

[17] Project Jupyter and community, “Jupyter widgets,”
https: //github.com/jupyter-widgets

[18] European XFEL, “karabo_data,”
https://github.com/European-XFEL/karabo_data

[19] D. Cortés-Ortuño et al., “nbval,” https://
github.com/computationalmodelling/nbval

[20] Project Jupyter and community, “Binderhub,”
https://binderhub.readthedocs.io

[21] M. Beg and H. Fangohr, “discretisedfield python pack-
age,” https://discretisedfield.readthedocs.io,
2019, for interactive execution look for ”launch Binder”
button in each section, for example section ”Visualising the
field using k3d”.

[22] T. C. Corporation and Community, “xarray,”
https://xarray.pydata.org

[23] DESY/EuXFEL, “JupyterHub for Maxwell cluster,”
https://max-jhub.desy.de

[24] “Photon and neutron open science cloud (PaNOSC),”
http://panosc.eu, 2019, funded under H2020 grant
agreement 823852.

[25] B. Grenier and E. Fernandez, “Open data analysis
with eosc-hub services,” in Book of Abstracts: Cloud
Services for Synchronisation and Sharing – CS3 Workshop
– INFN Rome January 2019, 2019. https://indico.
cern.ch/event/726040/contributions/3252075/

[26] “Data-access practices strengthened,” Nature, vol. 515,
no. 7527, pp. 312–312, Nov. 2014.
http://www.nature.com/articles/515312a

[27] K. Hinsen, “A carrot not a stick,” Nature Physics, vol. 15,
p. 727, 2019. doi:10.1038/s41567-019-0627-0

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR02

TUCPR02
806

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

