
OUR JOURNEY FROM JAVA TO PYQT AND WEB FOR CERN
ACCELERATOR CONTROL GUIS

I. Sinkarenko, S. Zanzottera, V. Baggiolini, BE-CO-APS, CERN, Geneva, Switzerland

Abstract
For more than 15 years, operational GUIs for accelerator

controls and some lab applications for equipment experts
have been developed in Java, first with Swing and more
recently with JavaFX. In March 2018, Oracle announced
that Java GUIs were not part of their strategy anymore [1].
They will not ship JavaFX after Java 8 and there are hints
that they would like to get rid of Swing as well.

This was a wakeup call for us. We took the opportunity
to reconsider all technical options for developing
operational GUIs. Our options ranged from sticking with
JavaFX, over using the Qt framework (either using PyQt
or developing our own Java Bindings to Qt), to using Web
technology both in a browser and in native desktop
applications.

This article explains the reasons for moving away from
Java as the main GUI technology and describes the analysis
and hands-on evaluations that we went through before
choosing the replacement.

INTRODUCTION
The majority of operational GUI applications running

in the CERN Control Centre and other accelerator control
rooms have been written in Java Swing. This technology is
used here since the early 2000s. The Controls Group only
develops general-purpose GUIs for mission critical
applications, such as the InCA/LSA settings management
[2] or the Sequencer [3]. For all the other GUIs, we rely on
the equipment experts and operators to develop them
because they know best what these GUIs should look like,
and want to flexibly adapt them. To facilitate their task, we
provide a framework, which consists of an application
frame with a toolbar and a logging console, a graph
component (JDataViewer), and, of course, different
controls-specific widgets. We also provide a
comprehensive set of client APIs to interact with the
control system.

In early 2016, we moved away from Swing because
we saw it as a legacy technology and recommended
JavaFX as the successor, after it had become an official
part of the Oracle JDK. Of the 500 operational GUIs
currently in use, 90% are still in Java Swing.
Unfortunately, in 2018, Oracle, the company backing Java,
stated in their Java Client Roadmap Update [1] that JavaFX
is a “niche” technology with a “market place [that] has
been eroded by the rise of mobile-first and web-first
applications”, and announced that JavaFX is no longer a
part of the Oracle JDK, but shall live on as an independent
product, to be maintained by the open-source community.
This official announcement was a wake-up call for us. We
decided to completely re-evaluate our strategy and

technology choices for GUI, even at the cost of not using
Java – our core technology – for GUIs anymore.

CRITERIA FOR SELECTING A NEW GUI
TECHNOLOGY

In our evaluation of GUI technologies, we considered
the following criteria:

• Technical match: suitability for Desktop GUI
development and good integration with the existing
controls environment (Linux, Java, C/C++) and the
APIs to the control system;

• Popularity among our current and future developers:
little (additional) learning effort, attractiveness for new
recruits;

• Longevity of the technology and reasonable
maintenance cost medium-term to long-term.

We looked at a very broad spectrum of technology and
then seriously evaluated the following options:

• Java Swing or JavaFX – continue with Java in spite of
the Oracle announcement;

• Web technology – use the currently most popular GUI
technology;

• Qt – use one of the most popular desktop GUI
frameworks with either Java or join the exploding
popularity of Python with PyQt, or adopt future-
oriented QtQuick GUIs.

In our evaluation, we accepted a possible move away

from Java to another high-level language, such as
JavaScript/TypeScript or Python, but we have never
considered moving our users or ourselves to C or C++.

Most of the content below is explained in far more detail
in the Master Thesis of one of the authors [4].

ANALYSIS
This section summarizes our findings and assessment

during the analysis. Please note that this evaluation was
done in 2018 and refers to the situation at that moment.
Also, some of the statements are based on empirical
analysis and might be tainted by personal interpretations.

Java Swing or JavaFX
The technical match and integration with the controls

system is (obviously) very good: as our long-standing
technology, it fulfils our needs very well and has an
excellent integration with the controls system. Acceptance
is mixed. Those developers who know and use JavaFX
typically like it very much. However, it clearly is less
attractive for new recruits – very few young engineers want
to learn JavaFX, let alone Swing.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03

User Interfaces, User Perspective, and User Experience(UX)
TUCPR03

807

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Longevity is the main problem, especially for JavaFX
without the support of Oracle. During several months, we
tried to assess the liveliness of the JavaFX community, by
looking at Twitter feeds [5], discussion groups [6], and
activity on the GitHub repo [7]. We participated in a
workshop “JavaFX beyond 2022” in Munich, to meet with
many other companies invested in JavaFX and to talk in
person to an official Oracle representative. We concluded
from all this that the future of JavaFX is not promising
enough; we rather expect it to slowly decline. On the other
hand, the future of Java Swing seems quite stable to us, for
several reasons. It is impossible for Oracle to abandon Java
Swing unilaterally, because it is part of the official Java SE
platform, which is governed by the Java Community
Process (JCP) [8]. Any change to the Java SE platform has
to be approved by an expert group and a community vote.
Given the fact that many companies are heavily invested in
Java Swing (much more than in JavaFX), it is unlikely that
the JCP will vote for removing Java Swing. If - against all
odds - Swing eventually was to be removed from Java SE,
there will be companies who see a business opportunity in
providing commercial support for Java Swing to many
legacy users. Unfortunately, it is impossible for us to take
over the support of Java Swing ourselves because it is a
huge framework consisting of over a million lines of Java
and half a million lines of (low-level) C and C++. For the
same reason we have never considered taking over support
of JavaFX.

In summary, we concluded that we cannot bet on Java as
the future GUI technology and need to get rid of JavaFX,
but we see Java Swing as “the new X/Motif”, a technology
that is outdated but likely to exist for many years to come.

Web Technology
Web applications generally run in web browsers and

connect to server-side business logic using HTTP(S). Due
to security constraints, Web GUIs have very limited access
to the computer that they run on, which is inconvenient for
desktop applications. This can be overcome using
frameworks such as Electron that rely on web technology
to build desktop applications.

Integration with our controls system is currently
difficult. Web-based clients communicate with REST,
while almost all our operational services (InCA/LSA [2],
Sequencer [3], PostMortem [9], LASER, etc.) have Java
clients and use Java RMI (Remote Method Invocation) and
JMS (Java Message Service) to communicate with the
servers. While it is possible to embed Java libraries into a
Python program (c.f. below), there is currently no modern
and mainstream way to embed our existing Java client
libraries directly into the browser.

Popularity depends. Web technology is very popular
amongst young software engineers, and several software
teams in the Accelerator Sector successfully use it to
develop their applications. For example, our Data Services
team uses it for advanced applications, such as AFT [10],
CCDE [11], ASM [12], and has developed an
infrastructure called “accsoft-commons-web” (ACW) [13]
based on Angular. Other teams use alternative frameworks

such as Vue.js. Conversely, Web is much less popular
among our physicists, operators, or hardware specialists,
and in general, in the scientific world, where Python reigns.

Longevity is the main downside of Web. Technology
changes frequently, new frameworks come and go [14]
every few years. Currently there are three major
frameworks (Angular, React, and Vue.js), but none of them
is the clear winner for the future. There is Web components
standard [15], aimed at sharing components between
frameworks, but it is not widely adopted. Consequently, a
team that invests into Web must be willing to adapt to a
changing technology, both in terms of learning new
frameworks and rewriting existing applications. This is not
an option for our users, who do not have an intrinsic
interest in software, but just want to use it as a tool to get
their main job done.

In our specific context, we will explore Web for our
read-only GUIs, such as Fixed Displays and user-
configurable dashboards, which need to be accessible
outside of control rooms, for instance, in offices or outside
CERN.

Python and PyQt
Python is an easy to learn general-purpose programming

language. It is used for a broad spectrum of purposes, from
embedded systems programming all the way to big data
analysis. Qt, a popular GUI framework implemented in
C++, is the default choice for writing desktop GUIs in
Python, with PyQt or Qt for Python providing Python
bindings. Qt is used, amongst others, in desktop
applications, such as Linux KDE and WinCC OA [16]. It
is also widely adopted in car dashboards, medical
appliances and entertainment equipment.

Over the last few years, Python has been exploding in
popularity. Worldwide, it is amongst the most popular
programming languages [17] and the number one “want-
to-learn” language [18]. Qt lies, in terms of popularity,
between Web and Java GUI technology.

For already some years, Python has been very popular in
CERN. Physicists use it for data analysis and Machine
Development; equipment specialists conduct prototyping
and testing; Controls and IT people write tools for code
generation, DevOps tasks and system administration.

Integration with the current controls system is average:
it is possible to call Java directly from Python using JPype
[19], but overly complex from a technical viewpoint. We
use this solution currently to enable Python GUIs to
communicate with our Java servers. However, we envisage
better alternatives, for example, direct integration of
Python with C/C++ libraries, such as our controls
middleware [20]; or communication over REST APIs,
once they are provided by our core controls services.

For longevity, Python and PyQt look good. Both have
existed for almost 30 years; Python is on the rise, and PyQt
shows no weakness either. Maintaining Python code is
more difficult than maintaining Java, but with the
appropriate methods and tools, it is possible to develop
well tested and easy to maintain operational GUI
applications.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03

TUCPR03
808

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

HANDS-ON EVALUATION
While doing the above analysis we evaluated the Qt GUI

framework in general and PyQt in particular more
thoroughly. In our evaluation, we excluded C++ from the
list of possible programming languages because we
considered it too complex for an average user in our
community.

There are two ways of developing Qt GUIs: Qt Widgets
and QtQuick. Qt Widgets are the original implementation
of Qt, originating from the 1990s, suitable for traditional,
natively looking desktop applications. QtQuick and QML
(Qt Modelling Language) is the new way of developing Qt
GUIs. QtQuick is a library and QML is “a user interface
specification and programming language. [...]. QML offers
a highly readable, declarative, JSON-like syntax with
support for imperative JavaScript expressions combined
with dynamic property bindings [21].” The Qt Company
heavily promotes QtQuick as the future technology, but
remains firmly committed to supporting Qt Widgets in the
future as well [22].

Based on existing experience, we took for granted that
we would be able to fulfil all our needs using PyQt based
on Qt Widgets. However, as we wanted to be up-to-date
with the newest Qt developments, we decided to invest
time into evaluating QML.

The following sections describe our experience with
QtQuick, QML and JavaScript, and explains why we
eventually abandoned it in favour of PyQt with
Qt Widgets. In our evaluation, we mainly studied two
areas: (1) representing data in many different types of
charts, with special attention to good performance, and (2)
use of typical desktop widgets such as trees, tables, tree-
tables, with the focus on how well they can be customized.

QtQuick/QML with JavaScript
Given the fact that we excluded C++ as a main

programming language, the idea was to use JavaScript (or
even better, TypeScript) to develop Qt GUIs. This would
have enabled us to align with web development and join
forces with our colleagues doing Web. Based on
preliminary research, we even hoped that it would be
possible to integrate QML GUIs with 3rd-party JavaScript
libraries and share code with our Web colleagues.

QtQuick appears to be aimed at building highly
aesthetic, carefully styled UIs such as car dashboards with
beautiful gauges and stunning dynamic content. On the
other hand, it puts less emphasis on typical desktop
application widgets, such as tables and trees.

QML gives JavaScript access only to a sub-set of the Qt
APIs. In general, the Layout API is exposed, while most of
the underlying data model APIs are hidden from QML and
reserved for C++, in an attempt to enforce a very strict
MVP (Model-View-Presenter) implementation. In other
words, many APIs accessible from C++ or Python are not
available to JavaScript. This fact can be limiting in
advanced use cases, especially where the interface between
C++ and QML has been not designed carefully enough,
like in the case of QtCharts (c.f. below).

QtQuick limitations become more apparent when using
third party libraries because many of them do not have
QML bindings (yet). For instance, an excellent library for
plotting, QCustomPlot, does not support QML [4]. When
we contacted its main developer regarding the QML
support, he replied that he was considering it, but wanted
QML to become stable before investing any time into it.

The only plotting library with QML bindings was
QtCharts [4] [23], which is provided by The Qt Company.
When used with JavaScript only, it exhibits terrible
performance: while the library can render almost a million
points per second using the C++ or Python API, the API
exposed to QML reduce this value by two/three orders of
magnitude [4]. The reason is that the underlying data model
exposes only two functions to JavaScript: append(x,y)
and clear(), and the graph is repainted every time a
single point is appended.

For people with experience in JavaFX, the declarative
programming style of QML felt awkward, because unlike
QML, which the developer is expected to read and even
edit when integrating JavaScript logic, FXML (the
declarative part of JavaFX) remains hidden. Conceptually
FXML is in fact closer to the XML *.ui files used for
Qt Widgets. Also, several of our Python users, who had
already explored PyQt with imperative Qt APIs, were not
willing to embrace QML. QML might feel familiar to web
developers, but none of our JavaFX developers had
experience with Web.

QtQuick GUIs are typically a mix of QML, JavaScript
and the “host” language (C++ or Python). It is a good
practice to add some JavaScript to the QML, to specify
GUI behaviour. However, there are no obvious and easy to
explain guidelines on how to split code between QML,
JavaScript methods, and the “host” language. While we
were confident that software engineers would find a good
balance between the three, we were sceptical that our
typical physicist, operator or equipment specialist would
have achieved the same. In other words, we were expecting
them to develop hard to maintain GUIs with large amounts
of JavaScript mixed into QML.

Integration with the native libraries, such as control
systems client libraries, would normally have to be done in
the “host” language. However, having a vision of a
JavaScript-oriented development approach, we attempted
to expose aforementioned libraries via the Qt plugin
mechanism, removing the need to write any glue code, as
long as UI elements are attached to Qt Signals/Slots
exposed by the library plugins. In addition to removing
overhead from high-level JavaScript developers, it limits
the maintenance of the plugins to be managed only by
experienced developers.

Debugging JavaScript and QML is possible only with
the Qt Creator, the IDE that comes with Qt. However, we
found this IDE far less advanced and user-friendly than the
competing IDEs we currently use.

Using TypeScript rather than JavaScript turned out to be
elusive. We had discussed this idea with a senior technical
engineer at the Qt developer conference, and it appeared
that the company was very interested in strong typing.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03

User Interfaces, User Perspective, and User Experience(UX)
TUCPR03

809

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Encouraged by them, we filed a Feature Request [24], but
the type system support is still pending, even a year later
[25].

Last but not least, our dream of reusing JavaScript code
with Web has vanished as well. The JavaScript in the QML
engine is intended for relatively small snippets of code
related to GUI logic. While it is up-to-date with modern
JavaScript standard, the JavaScript Host Environment [26]
is not directly compatible with 3rd-party libraries
commonly found in NPM (Node Package Manager)
repositories. There are conversion tools, and some
developers have tried to integrate full Node.js-like
environment with QML, but this remains an exotic
approach, and the corresponding projects are stale [27] [28]
[29].

Qt with Java Bindings
This was an alternative exploration. Our (obvious) hope

here was to reuse the massive investment we already have
in Java client libraries and tooling, and only switch the GUI
toolkit from JavaFX to Qt. Our first attempt was to use
Qt Jambi [30], the official Java binding for Qt. We soon
discovered that it was completely obsolete, based on a Qt
version from over 10 years ago, and not supported by
The Qt Company anymore. We nevertheless tried to take
the hopelessly outdated sources in an attempt to make it run
with the latest Qt version. We failed miserably, and had to
admit that updating the code to Qt5 ourselves would be a
major endeavour.

We did not give up and instead explored the possibility
to make a binding between QtQuick/QML and Java.
Unlike Qt Jambi, which maps the whole Qt API with
hundreds of classes and thousands of method calls, a
binding for QtQuick/QML would have been limited to a
dozen of classes and their methods. Generally, only
QObject, QMetaObject and related APIs would need to be
exposed along with types for data packaging, such as
QVariant. With this limited set of APIs, Qt’s Signal/Slot
mechanism could be used to marshal data between UI
elements created from QML and logic written in Java. We
have made a successful proof of concept using a nice little
open-source library DOtherSide [31]. We finally
abandoned this approach after we had decided to abandon
QML.

PyQt
After discarding QML for the reasons above, the obvious

choice was to go with the flow and adopt Python and PyQt.
We can benefit from prior knowledge and experience

that exists among our users, which have been developing
PyQt GUIs in the labs. PyQt connects us to the Python
community that stands strong in the scientific environment,
hence allowing us to attract interested people in CERN and
associated entities.

While switching GUI development from Java (which
served us loyally for decades) to another language
inevitably presents challenges in terms of migration, we
were confident with our decision and have not looked back
since. Our resulting plans are described below.

CONCRETE PLANS
Based on the above analysis, we have chosen Python and

PyQt as the new recommended technology for operational
GUIs. We are developing a similar framework as we
provide it for Java Swing. In parallel, we are working on a
PyQt-based Rapid Application Development (RAD)
toolkit, which shall make it possible to develop dashboards
and simple applications with no or little Python coding.
One important design goal is that a RAD application could
be transformed into a standalone fully-fledged operational
PyQt application without any need to rewrite it from
scratch. This transition is not possible in current RAD
frameworks, such as CO Fixed Displays and Inspector. In
terms of technology, we use PyDM [32] developed at
SLAC. Regarding Java, we will maintain our existing
frameworks and components, without however adding any
new functionality. Our support for JavaFX will end in 5
years. Java Swing remains our recommendation to develop
new operational GUIs, until the new PyQt-based
environment is ready. We will do our best to keep Swing
operational for the next 15 years.

As for the web technology, inside our team, we currently
limit ourselves to evaluating its suitability to build Fixed
Displays and fully-fledged controls applications. This will
allow us to gain experience with Web and to give our
colleagues feedback on the ACW framework.

SUMMARY
Java GUI technology is declining after almost 20 years

of loyal services. In 2018, Oracle has officially announced
that they will not bundle JavaFX anymore with the Java
distribution, and relies on the open source community to
maintain it as a separate project. This has made us
completely review our strategy and technology choices for
GUIs. We made a broad analysis based on various criteria
such as suitability for desktop GUI development and
controls, popularity among current and future developers,
learning effort, longevity and expected maintenance cost.
The outcome of this analysis leads us to choose Python and
PyQt as the new platform for operational GUI applications
and rapid application development (RAD), and Web
mainly for Fixed Displays and dashboards. We aim for the
first developer preview to be ready at the end of 2019. We
will support JavaFX for 5 years, and Java Swing during
next 15 years. Java Swing is the recommended technology
until the PyQt-based frameworks are ready.

REFERENCES

[1] Oracle Corporation, “Java Client Roadmap

Update,” March 2018. [Online]. Available:
https://www.oracle.com/technetwork/java/javase/ja
vaclientroadmapupdate2018mar-4414431.pdf

[2] D. Jacquet, R. Gorbonosov, and G. Kruk, “LSA -
the High Level Application Software of the LHC -
and Its Performance During the First Three Years
of Operation”, in Proc. ICALEPCS'13, San

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03

TUCPR03
810

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Francisco, CA, USA, Oct. 2013, paper THPPC058,
pp. 1201-1204.

[3] V. Baggiolini, R. Alemany-Fernandez, R.
Gorbonosov, D. Khasbulatov, and M. Lamont, “A
Sequencer for the LHC Era”, in Proc.
ICALEPCS'09, Kobe, Japan, Oct. 2009, paper
THC003, pp. 670-672..

[4] S. Zanzottera, “Evaluation of Qt as GUI
Framework for Accelerator Controls,” Politecnico
di Milano, Italy, 2018.

[5] “Feed for JavaFX,” Twitter, [Online]. Available:
https://twitter.com/hashtag/javafx?lang=en.
[Accessed 2018]

[6] “The openjfx-dev Archives,” [Online]. Available:
https://mail.openjdk.java.net/pipermail/openjfx-
dev/. [Accessed 2018].

[7] “OpenJFX Mirror,” GitHub, [Online]. Available:
https://github.com/javafxports/openjdk-jfx/.
[Accessed 2018].

[8] “Java Community Process,” Oracle Corporation,
[Online]. Available:
https://www.jcp.org/en/home/index

[9] M. Zerlauth et al., “The LHC Post Mortem
Analysis Framework”, in Proc. ICALEPCS'09,
Kobe, Japan, Oct. 2009, paper TUP021, pp. 131-
133.

[10] C. Roderick, L. Burdzanowski, D. Martin Anido, S.
Pade, and P. Wilk, “Accelerator Fault Tracking at
CERN”, in Proc. ICALEPCS'17, Barcelona, Spain,
Oct. 2017, pp. 397-400. doi:10.18429/JACoW-
ICALEPCS2017-TUPHA013

[11] L. Burdzanowski et al., “CERN Controls
Configuration Service - a Challenge in Usability”,
in Proc. ICALEPCS'17, Barcelona, Spain, Oct.
2017, pp. 159-165. doi:10.18429/JACoW-
ICALEPCS2017-TUBPL01.

[12] B. Urbaniec and C. Roderick, “Accelerator
Schedule Management at CERN”, presented at the
ICALEPCS'19, New York, NY, USA, Oct. 2019,
paper MOPHA149, this conference.

[13] BE-CO-DS, “Accsoft Commons Web,” CERN,
[Online]. Available: https://gitlab.cern.ch/accsoft-
commons-web

[14] M. Raible, “History of Web Frameworks 2015,”
Flickr, [Online]. Available:
https://www.flickr.com/photos/mraible/206062893
43/

[15] “Web Components Specifications,” [Online].
Available: https://www.webcomponents.org/specs

[16] “SIMATIC WinCC Open Architecture Portal,”
ETM professional control GmbH, [Online].
Available: https://www.winccoa.com/

[17] “TIOBE Index for September 2019,” September
2019. [Online]. Available:
https://www.tiobe.com/tiobe-index/

[18] “Most Loved, Dreaded, and Wanted,” Stack
Overflow, [Online]. Available:
https://insights.stackoverflow.com/survey/2018/#m
ost-loved-dreaded-and-wanted

[19] “JPype,” GitHub, [Online]. Available:
https://github.com/jpype-project/jpype

[20] V. Baggiolini, S. Jensen, K. Kostro, F. DiMaio, A.
Risso, and N. Trofimov, “Remote Device Access in
the New CERN Accelerator Controls Middleware”,
in Proc. ICALEPCS'01, San Jose, CA, USA, Nov.
2001, paper THAP003, pp. 496-498.

[21] The Qt Company, “QML Applications,” [Online].
Available: https://doc.qt.io/qt-
5/qmlapplications.html

[22] The Qt Company, “Technical vision for Qt 6 - The
next big release,” 7 August 2019. [Online].
Available:
https://www.qt.io/blog/2019/08/07/technical-
vision-qt-6

[23] The Qt Company, “Qt Charts,” [Online]. Available:
https://doc.qt.io/qt-5/qtcharts-index.html.
[Accessed 2018].

[24] “Qt Bug Tracker: Use TypeScript to write GUI
logic in Qt Quick (instead of JavaScript or C++),”
[Online]. Available:
https://bugreports.qt.io/browse/QTBUG-68810

[25] “Qt Bug Tracker: QML Type system,” [Online].
Available: https://bugreports.qt.io/browse/QTBUG-
68791. [Accessed September 2019].

[26] The Qt Company, “JavaScript Host Environment,”
[Online]. Available: https://doc.qt.io/qt-5/qtqml-
javascript-hostenvironment.html

[27] “Quickly,” GitHub, [Online]. Available:
https://github.com/quickly/quickly

[28] “Brig,” GitHub, [Online]. Available:
https://github.com/BrigJS/brig. [Accessed 2018].

[29] “Node.qml,” GitHub, [Online]. Available:
https://github.com/trollixx/node.qml

[30] The Qt Company, “Qt Jambi Reference
Documentation,” [Online]. Available:
https://doc.qt.io/archives/qtjambi-
4.5.2_01/com/trolltech/qt/qtjambi-index.html

[31] “DOtherSide,” GitHub, [Online]. Available:
https://github.com/filcuc/DOtherSide

[32] SLAC, “PyDM - Python Display Manager,”
[Online]. Available: http://slaclab.github.io/pydm/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03

User Interfaces, User Perspective, and User Experience(UX)
TUCPR03

811

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

