
HIGH-LEVEL PHYSICS CONTROLS APPLICATIONS DEVELOPMENT
FOR FRIB ∗

T. Zhang† , D. Maxwell, K. Fukushima, M. Ikegami and P. Ostroumov
Facility for Rare Isotope Beams, Michigan State University, East Lansing, USA

Abstract
For the accelerators driven by EPICS distributed control

system, controls engineers solve the problem to make the de-
vices work, while accelerator physicists dedicate themselves
to make the machine run as the physics predicted. To fill
the gap between the high-level physics controls and the low-
level device controls, we developed a software framework
so-called phantasy that can help the users like accelerator
physicists and operators, to work well with the machine in
an object-oriented way, based on which the implementations
for the physics tuning algorithms could be very efficient,
understandable and maintainable. Meanwhile, the modular-
ized UI widgets are developed to standardize the high-level
GUI applications development, to greatly reuse the code-
base and ease the development. The most important thing
is all the development also applies to other EPICS based
accelerators. In this paper, the design and implementation
for both interactive Python scripting controls and high-level
GUIs development will be addressed.

INTRODUCTION
The driver LINAC of Facility for Rare Isotope Beams

(FRIB) can accelerate all the stable isotopes to the kinetic
energy higher than 200 MeV/u, deliver the energy of up
to 400 kW on the end target, which will be more than two
orders advancement in the heavy ion accelerators regime [1].
To achieve such goal, reliable and sophisticated applications
for machine tuning should be ready for daily operation use.

Generally, high-level physics control is about controlling
the accelerator with physics algorithms. The purpose is to
apply the physics solution to the machine, and to expect the
physics predicted machine behavior.

From the view of controls aspect, for the EPICS [2] driven
facility, the entire machine is composed of many different
kinds of devices, each of them is controlled by Input-Output-
Controller (IOC) [3]. While all the IOCs are distributed in
the same ether network, e.g. FRIB Controls Network, the
data communication among these IOCs and any other client
with the network access is defined by Channel Access (CA)
protocol [4].

For client application implemented with a different pro-
gramming language, specific software is required to be able
to speak CA ‘language’. For instance, PyEPICS [5] is the
Python interface to CA.

∗ Work supported by the U.S. Department of Energy Office of Science
under Cooperative Agreement DE-SC0000661, the State of Michigan
and Michigan State University.

† zhangt@frib.msu.edu

On the other hand, accelerator physicists care more about
the physics property and behavior, e.g. the magnetic field of
a dipole, the gradient of a quadrupole, the simulated beam
trajectory along with the accelerator, etc.

To bridge the device control and machine tuning on ac-
celerator facility, systematic design of the software infras-
tructure for high-level physics controls is required.

The software framework should be able to help physi-
cists establish a software environment for tuning algorithms
development, here is the list of key problems to be resolved:

• Device control should be simple and easy enough to
understand

• Implement physics algorithm should be convenient and
maintainable

• Quick developing and testing should be supported

At FRIB, Python-based software solution for the high-
level physics controls has been shaping gradually during the
past few years, the project is named as phantasy, which
stands for Physics High-level Applications aNd Toolkit
for Accelerator SYstem [6]. Based on phantasy, various
physics high-level applications are developed and deployed
to FRIB Controls Network for the efficient beam commis-
sioning. The next few sections go with the details about the
development.

Figure 1: Development workflow of physics application with
phantasy.

SOFTWARE FRAMEWORK OF PHANTASY
phantasy is designed to support quickly developing

physics tuning algorithms on EPICS-based accelerator con-
trols system. It is expected that accelerator physicists with
Python knowledge could write scripts to control the acceler-
ator by properly importing and using functionality provided
by phantasy. Figure 1 shows the typical physics application
development workflow. The virtual accelerator application
which is part of the essential phantasy toolkit could be
used with algorithm prototyping, once the algorithm is de-
veloped, the same script can test against FRIB accelerator

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

TUCPR07
828

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



without any change, except the target machine and segment
controlled by just one single line of code. Eventually, a ded-
icated GUI application will be created based on the proven
tuning algorithm for the accelerator operation.

Device Abstraction
In the EPICS controls network, the device control is han-

dled by the data communication with IOCs. The ultimate
controls variable is the so-called process variable (PV), each
PV is the control knob for device reading and writing, e.g.
to monitor or change the stimulated current applied on the
magnet device.

There are so many PVs distributed in the controls network,
each PV name usually is a long string, though the naming
convention is followed, it is still not simple to incorporate
these long strings to construct a script.

From the object-oriented programming view, the device
should be abstracted, such that the way of device control will
be the communication between abstracted object rather than
PVs. The most important is all the PVs could be managed
separately, while the object for communication is always
the one appears in the tuning script. In other word, the
developed script should work with other segments of the
same accelerator or even other accelerators.

Figure 2: Device abstraction with phantasy.

In the framework of phantasy, the device abstraction is
designed to integrate all the device-related information into
one object, including the aforementioned PVs, which are
termed as dynamic fields, and other properties attached to
the device are termed as static fields. All these fields are
equally abstracted into the Python object attributes, the user
can get and set the attribute value by dotted-syntax. Here is
an example (see Fig. 2), elem is an abstracted object, I is
one of the attributes, then elem.I is to read the current I
value, while elem.I = 1.0 is to write a new value (here is
1.0) to I, the attribute I may link with the real PVs (one or
many) to stimulated current on the hardware, e.g. solenoid,
the regarding control logic is handled by phantasy.

From the view of high-level physics controls, all the val-
ues read from the device are measured with the engineering
unit, e.g. current is read with Ampère, while for the physics
modeling convenience, the corresponding physics unit in-
terpretation is necessary for the smooth physics algorithm
scripting. What phantasy does is to create the correspond-
ing physics field for the device object, while both of them are
linked with the same PV configuration, but different value
representation, the relationship between them is maintained
by a separate web application, so-called UNICORN, which
is short for UNIt COnveRsioN [7]. For the example in Fig. 2,
B is the physics attribute w.r.t. I. From B, one can directly

control the solenoid in the language of the magnetic field
in Tesla, while the I attribute will be synchronized by the
scaling laws between B and I. Now the physicist can freely
work with the device without any concerns.

In the framework of phantasy, all the device PV infor-
mation and static properties are maintained by a dedicated
package named as phantasy-machines, which contains
all the physicist interested devices from LEBT to the down-
stream LINAC of FRIB, as the commissioning progresses,
the data for new devices will be put into. Furthermore, only
the phantasy-machines package is required to make the
developed scripts still valid on other facilities, phantasy
provides the relevant toolkit to help generate the required
files.

Architecture
As Fig. 1 shows, the physics applications development

should be able to deliver final GUI apps with tested tuning
algorithms, meanwhile, development productivity and main-
tainability counts. Figure 3 shows the diagram of the whole
phantasy project, including how to abstract the entire ac-
celerator, how to develop GUI apps, how to organize the
code, etc.

Figure 3: Overview of the architecture of phantasy project.

The class for machine abstraction is MachinePortal,
which could be imported by from phantasy import
MachinePortal in Python. Two arguments could be
used for the instantiation of different machine and seg-
ment, e.g. mp = MachinePortal(machine='FRIB',
segment='LEBT'). From mp, other lattices could be
reached, e.g. mp.load_lattice('LINAC'). The loaded
lattice is a sequence of elements (devices), each element is
composed of multiple fields (see Fig. 2). All of the objects
are self-explanatory, that is the user can know what does
the object stands for by simply executing the object itself,
thus, even the user with little knowledge of FRIB LINAC
can still quickly master the machine and tune with physics
algorithms with phantasy.

The users can use phantasy to interactively control the
machine in any Python consoles, e.g. IPython or web-based

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

User Interfaces, User Perspective, and User Experience(UX)
TUCPR07

829

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Jupyter [8, 9], etc., in Jupyter Notebook, the lattice object
can even be represented in a much more user-friendly way,
e.g. showing the sequence of devices in a well-organised
table.

The GUI apps development is based on phantasy, highly
modularized UI widgets are developed to standardize the app
development and UI styles. Besides, a dedicated package
so-called mpl4qt [10] is developed for the data visualization
with matplotlib [11] in Qt5 GUI framework [12].

GUI APPLICATION DEVELOPMENT
There are two categories of the high-level physics GUI ap-

plications for FRIB, one is physics model-based and the other
is non-model based, the former requires specific physics
model configuration depends on the facility, the latter applies
to other EPICS-based facilities. At FRIB, envelop tracking
code FLAME [13] and particle tracking code TRACK [14]
are used for beam studies. The model interface for FLAME
has been implemented in phantasy framework. Additional
work is required to interface other simulation code if physics
online modeling is needed.

Below is the guideline the GUI apps development follows:

• Make the app self-explanatory as much as possible

• User-friendly and unified modern UI style matters

• Improve development efficiency by modularization

• Apps should be able to apply on any EPICS-based
facility

UI Widgets for Qt5

Figure 4: Qt-designer with developed UI widgets.

The GUI apps development for FRIB is based on
the Python 3.x and Qt5, to maximize productivity and
codebase reusability, Qt UI widgets have been devel-
oped. Figure 4 shows how to use LatticeWidget from
FRIB Collection and MatplotlibCurveWidget from
DataViz Widgets of Qt-designer to build the UI for a new
Qt5 application. These UI widgets are developed as separate
packages named as phantasy-ui and mpl4qt, respectively.
All of these UI widgets are designed with simple usage, con-
necting the proper signals and slots can do whatever you

want with the data from EPICS control system. Convenient
command makeBasePyQtApp could be used to initiate the
GUI app with unified project structure and UI styles, post-
development could be continued.

Featured Online Apps
Figure 5 lists the high-level physics apps for FRIB commis-

sioning, by using these apps, we significant boost the beam
tuning efficiency [15]. The app launcher could be reached
by right-clicking on the Desktop or File Explorer (Nautilus
of GNOME) through Physics Apps context menu.

Figure 5: Gloabl launcher for FRIB physics apps.

Online Trajectory Correction The orbit-response-
matrix (ORM) approach is applied to correct the beam cen-
tral trajectory along the FRIB LINAC. Follow the develop-
ment workflow shown in Fig. 1, the ORM-based trajectory
tuning algorithm was developed and tested against virtual
accelerator, then loading different lattices to work with FRIB
LINAC, eventually, the GUI app was developed.

The definition of the response matrix item R𝑖,𝑗 could be
defined by R𝑖,𝑗 ∶= Δ𝑥𝑖

Δ𝜃𝑗
, where Δ𝑥𝑖 is the trajectory change

at 𝑖-th BPM, Δ𝜃𝑗 is the kick angle change of the 𝑗-th correc-
tor. Usually, the kick strengths are controlled by varying the
stimulated electric current applied on the correction mag-
nets, thus the measured BPM response are against the kick
strengths, not angles, but the responses are still valid for
figuring out the optimal current settings for the correctors,
so here we use 𝜃 to indicate the kick strength.

To facilitate the visualization of the trajectory and the se-
lection of BPMs and correctors, Trajectory Viewer app
is created (see Fig. 6). In the Tools menu, Load Lattice
action could be invoked to change the lattice to work with,
e.g. switching from FRIB_VA (development) to FRIB (com-
missioning).

After selecting BPMs and correctors in the Monitors
and Correctors panels by checking/unchecking the check-
boxes, one can launch another app for the ORM measure-
ment and trajectory correction from Tools → Trajectory
Response Matrix, or simply press keyboard shortcut:
CTRL + SHIFT + M.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

TUCPR07
830

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



Figure 6: Trajectory Viewer with virtual accelerator BPM
signal, upper: before correction, lower: after correction.

The upper subfigure of Fig. 7 shows how the ORM could
be measured. It is very convenient to change the sweeping
range for each corrector, and also comes with featured but-
tons to control the measurement procedure. Once the mea-
surement is done, menu actions are created to save/load the
measured ORM to/from a file. The lower subfigure of Fig. 7
shows how the ORM can be used to correct the trajectory.
All the calculated corrector settings should be confirmed by
the user before applying, while all the corrector settings are
stored as history marked with timestamps, which supports
retrospection if any unexpected issue happens. By these
two apps, we efficiently steered the beam central trajectory
within ±0.5 mm along the entire LS1 and part of FS1 section
of FRIB LINAC [15].

Online Modeling After abstracting the accelerator with
phantasy, one can get the physics model depends accelera-
tor representation, usually, a lattice file that required by the
specific simulation code to output the simulated machine
physics behavior. Up to now, FLAME is supported to ei-
ther generate a Python object for the physics model, or a

Figure 7: Correct trajectory by ORM approach, upper: ORM
measurement, lower: correct trajectory with ORM.

lattice file for offline simulation. The common APIs for other
physics model engines are under development.

Figure 8: Online modeling for FRIB LINAC, left: online
model app, right: schematic of the online-model dataflow.

Since FLAME can simulate the beam envelope and trajec-
tory of FRIB driver LINAC within milli-second order [13],
online modeling the machine at 1 Hz rate is achievable. Fig-
ure 8 shows the developed application for online modeling
with FLAME at FRIB. Still, the common rule applies, that

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

User Interfaces, User Perspective, and User Experience(UX)
TUCPR07

831

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



is changing working lattice from the Tools menu to model
the different machine or segment.

Generally, in the high-level physics controls im-
plemented by phantasy, physics model (MODEL) and
accelerator (CONTROL) working environment coexist in
the memory of current working space. The dataflow
between CONTROL and MODEL is controlled by the
method of lattice object (lat), e.g. pull all the device
live settings from CONTROL to MODEL is achieved by
lat.sync_settings(data_source='control'), the
device settings in physics unit will be automatically updated
to model settings. At this point, one can output a model
representation (e.g. a lattice file) for simulation study, or
directly run the model. Once the simulation results are
ready, just signal the dataviz widget with proper formatted
data structure to the corresponding slot to update the plot.
This is basically how the online model app works.

While on the other hand, the physics model could be well
optimized based on various tuning ideas, which will finalize
with one group of model settings, in the opposite direction
(shown as 2© in Fig. 8), one can push the model settings to
the CONTROL working space by changing the data_source
parameter to model, such workflow is model-based online
optimization.

Concerning the discrepancy between the physics model
and the real LINAC, the model-based online optimization
has not been heavily applied on FRIB.

Parameter Correlation Analysis&Visualization By
altering one device setting and monitoring the other devices
responses, simple correlation may help the machine tuning,
such procedure happens very often in the commissioning.
One dedicated app has been built to make the parameter
correlation study by just mouse clicking. Figure 9 shows the
main user interface of Correlation Visualizer appli-
cation, which is built upon MatplotlibErrorbarWidget
of mpl4qt and phantasy-ui, as well as the underlying
functionality from phantasy core.

Figure 9: Correlation Visualizer app with data from RF
cavity phase scan routine against virtual accelerator.

Highly abstracted device fields are listed in the Select
popup dialog, one can select/deselect the dynamic field
of any devices by checking/unchecking the item shown in
Fig. 10, multiple selection is supported when selecting ex-
tra monitors. For the case of a device not been built into
phantasy-machine, the full PV names should be put into
the Input PVs section.

Figure 10: Object-oriented implementation of element se-
lection of Correlation Visualizer.

The scan range and data acquisition configuration can be
configured as the widgets and tooltips guided. Push Start
button to start the scan, Stop to stop. If Pause is pushed, the
current running job will be paused, push the Resume button
(still is Pause button but different literal display name) to
resume. The indicator on the left of Start button is the
signal from Machine Protection System (MPS), if MPS indi-
cator is not green, the running job will be paused, until the
signal back to normal, and resumed by the user. The MPS
integration could be bypassed by unchecking Tools → MPS
Guardian menu.

The properties of the figure in the errorbar dataviz wid-
get could be flexibly adjusted by Config menu action in-
voked by right-clicking context menu. mpl4qt is main-
tained to support more features to the dataviz part of
all the physics apps, e.g. Allison scanner app utilizes
MatplotlibImageWidget to facilitate the user-friendly
data visualization [16]. The publish-ready high-quality fig-
ure could be produced directly from the app.

After the beam traverses through the Carbon stripper,
multi-charge states will be generated. Figure 11 shows the
detected beam current signal of different charge states when
sweeping the magnetic dipole in FS1 section downstream
of stripper.

Correlation Visualizer also supports two-
dimensional scan, which could be launched by keyboard
shortcut CTRL + SHIFT + H, the implementation is to
create another outer loop of one variable, while the current
scan task as the inner loop of another variable, such a

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

TUCPR07
832

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



Figure 11: Beam current monitor signal v.s. magnetic dipole
strength for the multi-charge states of Kr beam after Carbon
stripper.

Figure 12: 2D parameter scan by Correlation Visualizer:
beam-based alignment example, tested against virtual accel-
erator.

way can make the codebase reusable. Figure 12 shows
the interpolated 3D density plot of the scan of one pair of
corrector and quadrupole to do the beam-based alignment,
the optimal setting of the corrector (red boxed) ensures the
beam passes through the center of the quadrupole.

Software Management and Deployment
All the source code of physics applications are managed

by git version control system [17], which allows us to track
all the code changes and smoothes the collaboration. Cur-
rently, all the development is hosted in FRIB intranet, while
phantasy project is starting to migrate to GitHub [18] for
the public access.

Once the development reaches a new milestone, e.g. new
features are developed, bugs are fixed, a new release will be
tagged, after code review, the new release will be merged
into production branch to create a new Debian package by
the Jenkins service [19], then the package will be deployed

to the FRIB Controls Network by Puppet service [20]. Such
continues integration (CI) and continues delivery (CD) work-
flow has already been established and used every day at
FRIB [21, 22]. As of writing this paper, all the physics apps
are packaged for Debian Stretch OS, while as the IT infras-
tructure is evolving, all the development can be tuned up for
the new updates, such workflow ensures the code quality,
system reliability and efficiency.

For the physics applications development, we developed
an automatic workflow to generate the VirtualBox appliance
by Vagrant [23] for other users to test and develop the apps
on their computer. And also developed another web-based
computing platform for the app development, the users can
use the web browser to do all the work regarding physics
apps in the Jupyter Notebook in a private user space [24].

CONCLUSION
The systematic software solution based on Python pro-

gramming language for high-level physics controls are de-
signed and implemented at FRIB. The accelerator devices
are abstracted into Python object with phantasy, controls
in the interactive scripting environment is achieved, agile
development workflow for the physics tuning algorithms are
established. User-friendly GUI applications based on Qt5
are developed for the commissioning and operation. Generic
Qt5 UI widgets are developed for building modularized ap-
plications. By using these apps, efficient machine tuning
was achieved at FRIB LINAC, and in the same framework,
by creating new machine configuration, we can continue
to efficiently tune the downstream section in the upcoming
milestone. All the physics apps are seamlessly integrated
into FRIB’s CI/CD system. The framework of phantasy
also applies to other EPICS-based facilities.

ACKNOWLEDGMENTS
The authors would like to thank T. Yoshimoto, T. Maruta,

A. Plastun, D. Chabot, S. Cogan, M. Konrad, B. Martins,
D. Omitto and S. Lidia for the useful discussions.

REFERENCES
[1] J. Wei et al., “Advances of the FRIB project”, Int. J. Mod.

Phys. E 28, 1930003 (2019).
doi:10.1142/S0218301319300030

[2] EPICS, https://epics-controls.org
[3] EPICS IOC application developer’s guide, https://epics.
anl.gov/EpicsDocumentation/AppDevManuals/
AppDevGuide/3.12BookFiles/AppDevGuide.book.
html

[4] Channel access protocol specification, https://epics.
anl.gov/base/R3-16/0-docs/CAproto/index.html

[5] Epics channel access for Python, https://cars9.
uchicago.edu/software/python/pyepics3

[6] T. Zhang, “Physics high-level applications and toolkit for
accelerator system”, in EPICS Collaboration Meeting, Ar-
gonne National Laboratory, IL, USA, Jun. 2018, https:
//epics.anl.gov/meetings/2018-06/talks.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

User Interfaces, User Perspective, and User Experience(UX)
TUCPR07

833

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[7] Web application for unit conversion, https://github.
com/phantasy-project/unicorn-webapp

[8] IPython, https://ipython.org

[9] Jupyter, https://jupyter.org

[10] Qt widgets developed with matplotlib, https:
//phantasy-project.github.io/mpl4qt

[11] Matplotlib, https://matplotlib.org

[12] Qt GUI framework, https://www.qt.io

[13] Z. He et al., “The fast linear accelerator modeling engine for
FRIB online model service”, Computer Physics Communica-
tions 234, 167 - 168 (2019).
doi:10.1016/j.cpc.2018.07.013

[14] TRACK: the beam dynamics code, https://www.phy.anl.
gov/atlas/TRACK

[15] P. Ostroumov et al., “Beam commissioning in the first super-
conducting segment of the Facility for Rare Isotope Beams”,
Phys. Rev. Accel. Beams. 22, 080101 (2019).
doi:10.1103/PhysRevAccelBeams.22.080101

[16] T. Zhang et al., “High-level Application for the Emittance
Measurement by Allison Scanner”, presented at the North
American Particle Accelerator Conf. (NAPAC’19), Lansing,

MI, USA, Sep. 2019, paper TUPLS05.
doi:10.18429/JACoW-NAPAC2019-TUPLS05

[17] Git, https://git-scm.com

[18] GitHub repository of ‘phantasy’ project, https://github.
com/phantasy-project

[19] Jenkins, https://jenkins.io

[20] Puppet, https://puppet.com

[21] M. Konrad et al., “Continuous Integration and Continuous
Delivery at FRIB”, in Proc. 11th Int. Workshop on Personal
Computers and Particle Accelerator Controls (PCaPAC’16),
Campinas, Brazil, Oct. 2016, pp. 145–147.
doi:10.18429/JACoW-PCAPAC2016-FRITPLCO01

[22] M. Konrad et al., “Automatic deployment in a control sys-
tem environment”, presented at ICALEPCS’19, NY, USA,
October 2019, paper MOPHA074, this conference.

[23] Vagrant, https://www.vagrantup.com

[24] T. Zhang et al., “Cloud Computing Platform for High-
Level Physics Applications Development”, presented at
ICALEPCS’19, NY, USA, October 2019, paper MOPHA167,
this conference.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR07

TUCPR07
834

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)


