
IMPROVEMENT OF EPICS SOFTWARE DEPLOYMENT AT NSLS-II

A. A. Derbenev , Brookhaven National Laboratory, Upton, USA †

Abstract
The NSLS-II Control System has workstations and serv-

ers standardized to the usage of Debian OS. With excep-
tions like RTEMS and Windows systems where software is
built and delivered by hand, all hosts have EPICS software
installed from an internally-hosted and externally-mirrored
Debian package repository. Configured by Puppet, ma-
chines have a similar environment with EPICS base, mod-
ules, libraries, and binaries. The repository is populated
from epicsdeb, a community organization on GitHub. Cur-
rently, packages are available for Debian 8 and 9 with leg-
acy support being provided for Debian 6 and 7. Since pack-
aging creates overhead on how quickly software updates
can be available, keeping production systems on track with
development is a challenging task. Software is often cus-
tomized and built manually to get recent features, e.g. for
AreaDetector. Another challenge is services like GPFS
which underperform or do not work on Debian. Proposed
improvements target keeping the production environment
up to date. A detachment from the host OS is achieved by
using containers, such a Docker, to provide software im-
ages. A CI/CD pipeline is created to build and distribute
software updates.

SYSTEM OVERVIEW
The NSLS-II control system is built on Experimental

Physics and Industrial Control System (EPICS) infrastruc-
ture with a typical controls application being created as an
Input-Output Controller (IOC) [1]. In addition to IOCs
which are meant to communicate with hardware and other
IOCs to implement control logic and functions, the soft-
ware suite includes a diverse set of higher-level tools, ser-
vices, libraries, command line and graphical interface ap-
plications. Examples are Channel Access command line
tools and Python interface, Archiver Appliance, Control
System Studio and Phoebus, Olog, Alarm Server, MASAR.
While there can be several dozen IOCs per beamline to
serve hardware integration and automation needs, tools
usually come one installation per workstation, and services
come one per beamline.

Controls applications are typically built and run in a spe-
cific development and runtime environment. Servers
which run IOCs are standardized to use Debian operating
system (OS). EPICS base, modules, and tools necessary for
IOC development and operation are delivered as Debian
packages available from the NSLS-II repository main-
tained by NSLS-II Controls [2]. EPICS source code is not
“debianized” by default and is converted to package format
on GitHub thanks to collaboration efforts [3]. When an

IOC system is configured, apt package sources are speci-
fied appropriately, and a set of default packages is installed
via usage of Puppet.

With the development environment made available and
any special dependencies manually installed (e.g. vendor-
supplied libraries for hardware), IOC systems become
ready for building and running EPICS applications. A typ-
ical IOC is manually checked out from the internal GitLab
or Mercurial repository, built in-place, and registered to run
in the system via the sysv-rc-softioc utility. The manage-
iocs toolkit provided by the utility serves as a uniform and
standard way of running production IOC instances, and
provides essential features like detached console access,
logging, run/stop/restart control, and status reporting. The
approach to application delivery is hence manual, limited
to application level, and is version control system (VCS)
based for deployment and change management.

KEY CONSIDERATIONS
A multitude of software is involved in running the ma-

chine, and development of controls applications is con-
stantly ongoing as updates become available and new con-
trols integration and automation needs emerge. It is prudent
to make sure that approaches to software delivery for
NSLS-II Controls stay current with evolving technology
and requirements. A well-understood and standardized so-
lution brings many benefits from reduced costs of systems
scaling and replication to ease of continuous maintainabil-
ity to long-term sustainability of Controls software infra-
structure.

Whatever the approach proposed, it should aim to re-
spect the multitude of solutions, practices, and mechanisms
currently employed for NSLS-II Controls applications de-
livery. When considering any kind of standardization, it is
important to recognize that Controls environment is often
shared by different developer groups, and many stake-
holder parties have their interest in the approach which is
to be set as standard. Service developers and maintainers,
IOC developers, tool developers, beamline staff, IT, etc.
contribute to the evaluation of existing and proposed solu-
tions and make sure that critical needs are met. Several
considerations were identified.

Scalability
With NSLS-II Controls spanning over accelerator sys-

tems and over two dozen beamlines, it is important for the
software delivery approach to be flexible and applicable
for all environments which need to be supported. The so-
lution should resolve facility-scale software delivery needs
by design, as made possible by an existing set of control
system standards which make controls environment mostly
uniform across beamlines. Practical example of this con-
sideration is implication that hundreds of IOCs and other
apps will need to be managed eventually.

† aderbenev@bnl.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUDPP03

Control System Infrastructure
TUDPP03

847

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

time to discover instability in a deployed update. Version-
ing allows to mitigate these risks by providing a history of
software states which can be at any time recovered to a last
known stable condition. The solution employed should al-
low that to happen both for the software in question, and
for its dependencies. One practical example of this consid-
eration is that dependency version information should be
available for all software managed.

In-place Production Modifications
NSLS-II is a scientific facility, which means that stable

and uninterrupted scientific output of any instrument is the
main goal of controls software. Practically it means that
controls systems should be mutable enough to incorporate
research demands, e.g. support of new hardware, episodic
modifications due to experiment needs, prompt production
modifications to counter a discovered system issue etc.
When applied to software, it means a need to modify pro-
duction instances of software. The solution should either
allow post-factum integration of changes introduced, or
provide speedy mechanisms of introducing changes so that
the overhead was small enough to not prevent its usage. An
example of this consideration is a possibility to run integ-
rity verification checks to make sure that deployed in-
stances are in sync with application configurations stored.

Preliminary Testing
While being a common requirement, in-place modifica-

tions which target runtime needs are not the only changes
introduced to the system. Just as often, system updates can
be handled in a more planned fashion, and since those are
to be applied on an already working system, preliminary
testing becomes an important part of the process. If not suf-
ficiently covered, this will introduce associated risks which
will eventually stagger the update process and prevent roll-
ing updates. A proper solution should allow software test-
ing which does not require any system downtime, either
through running the updated software in an isolated test en-
vironment, or providing a powerful utility for running test
suites. Practical consequence here is that the solution
should incorporate testing as a regular part of its workflow,
with clear difference between test and production delivery.

Replication of App Instances
Due to standardization efforts, it is common for NSLS-

II controls to reuse hardware and software base on different
beamlines. The same EPICS driver can be used to support
a family of devices, so many IOCs can be compiled from
the same source code and deployed in a similar fashion,
save for the unique configuration of every separate in-
stance. Instead of treating every application as a unique
case with source being separately versioned, it is feasible
to use same code reference so that all dependent systems
could be managed and updated in a uniform fashion with-
out introducing desynchronization of individual instance
versions. The solution employed should allow easy “repli-
cation” of existing application instances to create new, sim-
ilar deployments. A practical example of this is to allow
different software instances to be built from the same

Maintainability
Controls software is subject to ongoing updates and

changes, e.g. OS versions, EPICS base and modules up-
dates, Python version changes, replacement of existing and
integration of new hardware, digital certificates renewal,
etc. The approach should be flexible enough to either ac-
commodate such changes easily without incurring high de-
velopment costs, or be decoupled from these changes by
design. The goal is to reduce maintenance requirements in
terms of engineer time spent on the support of the delivery
system itself. An example of this consideration is that pref-
erence is given to mature products with rich support avail-
able (e.g. Git for version control, Ansible for automation).

Accessibility
One of main goals for the solution design should be its

accessibility for software developers. Preferably capitaliz-
ing on industry-grade technology and practices, it should
not incur an excessive burden on the process of implement-
ing and introducing changes to controls software. The sys-
tem should not be targeted only towards software develop-
ment experts and should provide most of its functionality
with minimum entrance threshold (e.g. via defaults, tem-
plates, helper scripts etc.). The solution should also be cov-
ered with enough documentation. An example of this con-
sideration is that convenience user-facing interface should
be provided.

Support of Persistence
One of major needs tied to control system software is

preserving applications “persistence”, which in this case is
defined as any changes generated at and associated with
the software runtime. With a delivery mechanism in place,
source code and application configurations can be recre-
ated at any time by re-deploying the software. In contrast
e.g. for IOCs, persistence usually comes in a form of ma-
chine values which are saved in files on the disk and which
cannot be recovered by the deployment mechanism if lost.
An example design consideration is that the delivery mech-
anism cannot be “imperative”, i.e. it cannot completely
overwrite the software instance when deployment is per-
formed without somehow preserving its persistence.

Release and Staging Function
Handling software releases is an important part of the

update mechanism. To reduce the cost of unforeseen up-
date issues, a “staging” mechanism is beneficial to provide
an easy switch to a stable software version in case of update
failure. In its design, the delivery solution should incorpo-
rate these considerations by providing a simple and easily
reversible release mechanics. An example of this consider-
ation is automatic backup on deployment.

Versioning
Not all issues associated with software updates are im-

mediately, or even just in short-term, discernible. Some is-
sues tend to emerge only on specific conditions or in spe-
cific combinations of application parts, and it may take

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUDPP03

TUDPP03
848

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

source code repository, with application configuration be-
ing separately recognized.

Ease of Instance Recovery
Deployment of any existing application instance should

be straightforward and fast to address the priority purpose
of controls to provide uninterrupted scientific research. For
cases when recovery is necessary, it should be possible to
restore the application function using standard delivery
practices without resorting to manual bypasses. Otherwise,
non-standard recovery methods would need to be resolved
later, which would introduce risks of deployment scheme
deterioration. E.g. manually checking out and building an
IOC code would result in a production instance being not
in sync with the delivery pipeline. An example can be al-
lowing deployment in a single command, or providing
tools for easy assimilation of local changes.

Accommodation for Unique Cases
While there is a set of standards available for NSLS-II

Controls solutions, they mostly cover implementations
which are replicated across several, or all, beamlines. Ex-
amples are motion control and detector solutions. How-
ever, it is also common for the accelerator and beamlines
to have one-of-a-kind hardware requirements which are not
seen anywhere else in the system. Standardizing such cases
is not feasible, but as they are a part of Controls domain,
the solution employed should be able to incorporate these
unique software cases. In terms of solution design, an ex-
ample of that consideration is application instances being
treated with a sufficient abstraction level to not rely exces-
sively on standardization implications.

Support of Multiple Platforms/OSs
NSLS-II Controls is mostly standardized to the usage of

Debian OS as its IOC runtime. With that, however, there is
not a 100% uniformity in terms of OS versions used. Fur-
ther, some beamline hardware, most often detectors, can
some in a “turn-key” format with servers which are essen-
tially frozen at certain Linux distribution for support rea-
son, or even come with Windows support. Some solutions
utilize embedded platforms like VME and cPCI. When de-
signing a software delivery solution, it is important to con-
sider and make a decision about the extent of support pro-
vided in terms of platform coverage, and whether or not
certain standards should be supported or even enforced in
that regard. Practically, this consideration can result in ex-
clusion of embedded systems from the list of managed, e.g.
because they are not compatible with Ansible automation.

SUPPORT CONSIDERATIONS
As it was discovered from previous initiatives directed

towards software delivery (SNACK [4]), two most im-
portant factors tied to their long-term success and adoption
are investing in training of developers, and having a solid
capacity of solution support. The latter includes incorpo-
rating new functions requested, addressing discovered is-
sues, dealing with dependencies updates and infrastructure
changes, and maintaining the environment in which the

tool runs, be it services (LDAP, Ansible, GitLab), hardware
(build, testing, orchestration hosts, network), or system
configuration (certificates, keys, system users). More spe-
cifically, a facility-scale, complex software delivery sys-
tem requires hardware, software, and configuration upkeep
and maintenance:

• CI/CD tools, pipeline, and workflow design will re-
quire ongoing investments in services configuration,
update, and usage training.

• Depending on how testing is performed and whether a
separate testing environment is present, any gateway
(i.e. testing-to-production) servers and the network in-
frastructure will require configuration and further up-
dates.

• If virtualization technology is used, container hosts
will require configuration, extension on demand, up-
dates, and general system support, including hardware.

• Based on experiences from the system support and us-
ers’ feedback, testing and delivery mechanisms will
have to be continuously revised and refined, and up-
dates to the tool chain addressed (e.g. a new GitLab
version).

EXPLORED APPROACHES
When designing an application deployment system, one

of earliest considerations which appear is defining the
scope of the solution. Based on the amount of investment
planned, the architecture of the approach can span several
levels, from application to server to beamline to facility.
Likewise, a set of required features should be defined,
which may or may not incorporate testing, staging, back-
ups, redundancy, and other items listed as key considera-
tions above.

At this time and for purposes of improving controls soft-
ware delivery at NSLS-II, following approaches and their
expansiions are being used or explored:

Manual In-place Delivery with Version Control
For purposes of maintaining machine and instrument op-

erations, the existing scheme of manual, application-level
software delivery sufficed for years. Familiar to develop-
ers, it provides unmatched flexibility and is very friendly
to quick fixes and in-place modifications. That conven-
ience, however, comes at a cost of diminishing system
knowledge, unaccounted changes, lack of consistent test-
ing and update capacity, effort duplication, and quality
creep. Still, the approach can be formalized and leveraged
in such a way that most its deficiencies are mitigated, e.g.
through more standardization of deployment practices,
centralized knowledge bases, and reuse of existing appli-
cation instances. Some of these deficiencies can be miti-
gated, e.g. as done in the IOC support module manager
SUMO [5].

This approach is a de-facto NLSL-II standard for IOC
deployments.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUDPP03

Control System Infrastructure
TUDPP03

849

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Manual Usage of Pre-built Binaries
An improvement of the existing approach for cases when

different applications are using the same source code, in-
troduction of a central binary storage promotes better
standardization of environments, e.g. OS versions, while
also providing a convenient route to handling software up-
dates on a scale beyond individual application level. In-
stead of building every application with its own set of de-
pendencies, pre-built binaries are provided, associated with
a known assembly of software versions.

This approach is currently being investigated for deploy-
ment of NSLS-II AreaDetector software, with one of main
challenges being catering to cases which require special
dependencies (e.g. ZeroMQ), or platforms (e.g. Windows),
to run.

Orchestrated On-demand Delivery
Instead of utilizing manual approach to setting up pro-

duction software instances, some automation solution can
be used so that deployed applications were a product of a
well-defined delivery process. A straightforward option
would be automation of otherwise manual deployment ac-
tions by using a tool like Ansible or Puppet. Another exam-
ple is rsync-dist tool which delivers built binaries to remote
servers while also being decoupled from SVC [6].

This approach is used to set up EPICS developer envi-
ronments on IOC servers with Puppet installing necessary
packages. SNACK utility uses Ansible to perform IOC
builds and deployments.

Pipelined Build and Delivery with CI/CD
A solution which is more in line with industry-grade

DevOps, a Continuous Integration and Continuous Deliv-
ery (CI/CD) pipeline would allow to create a more whole-
some and solid workflow for accommodating changes
from development to test to production. There are many
open source and proprietary solutions available: Jenkins,
Hudson, GitLab, Travis, AppVeyor, etc. Each of these op-
tions has various advantages and disadvantages. For exam-
ple, Travis and AppVeyor are hosted service which reduces
IT expertise but limits the kinds of testing that can be per-
formed. Jenkins and Hudson are web containers that need
to be managed on site but allow for more complex tests. An
example of this approach is IOCs delivery system at FRIB
[7].

At a glance, to meet the CI/CD requirements of NSLS-
II controls, the CI engine would need to support:

• Multiple concurrent & ordered builds
• Multiple builders (maven, make, etc.)
• Support for multiple languages
• Multiple VCS systems and VCS hosting services
• Support for creating release jobs
• Support for containers and images
Current plans are to use this approach to set up a delivery

pipeline for EPICS tools and services, namely Control Sys-
tem Studio, Phoebus, Olog, Alarm Server, and others.

Virtualization
Controls applications typically run on physical or VM

hosts which come with a full developer environment and
appear as a complete Debian OS system for as much as any
application is concerned. These systems have a well-de-
fined beamline affiliation and appropriate network config-
uration. A significant shift from this approach would be
switching to a container-based delivery, or to usage of
lightweight virtual systems, where separate applications
come as images from which containers are being created
and run. That approach would decouple the delivery
scheme from considerations associated with underlying
hardware or host OS, allow easier isolation, and compati-
bility with existing CI/CD approaches. However, this ap-
proach may not be appropriate for user interface applica-
tions and software which deals with heavy data transfer or
processing.

In exploration of this approach, a sample solution was
created based on the usage of Docker. An image is provided
for EPICS base and modules, and IOC images can be made
to run containers on any system which provides Docker
support. With a special toolkit, any IOC can quickly be
converted to the image format with a potential to be run in
a container on most system servers. Further solution refine-
ment is required to address various key considerations
mentioned.

CONCLUSION
Since the work has begun to improve EPICS software

deployment at NSLS-II, many realizations have been made
about requirements posed by parties involved in controls
software development, system and infrastructure manage-
ment and support. Lots of insights were derived from
SNACK experience, and several emergent needs were
identified which can potentially be resolved by introducing
a more unified controls software delivery mechanism. Ex-
amples are new EPICS services such as Phoebus, new soft-
ware versions such as EPICS 7, and widely used software
such as AreaDetector. Currently, investments are made to
identify and design a wholesome approach which could ac-
commodate all these and other needs, with specific focus
being put into utilizing modern CI/CD tools and ap-
proaches.

REFERENCES
[1] EPICS Home, https://epics.anl.gov

[2] NSLS-II EPICS Repository, https://
epicsdeb.bnl.gov/debian

[3] GitHub epicsdeb Packaging, https://
github.com/ep-icsdeb

[4] SNACK toolkit, https://epics.anl.gov/meet-
ings/2018-06/talks/06-15/AM/9.2-SNACK.pdf

[5] Building EPICS Support Modules with SUMO, in Proc.
EPICS Collaboration Meeting 2019, Aix-en-Provence, France,
Jun. 2019, p. 1,
https://indico.cern.ch/event/766611/book-of-
abstracts.pdf

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUDPP03

TUDPP03
850

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

[6] Deploying EPICS Applications with rsync-dist, in Proc. EP-
ICS Collaboration Meeting 2019, Aix-en-Provence, France,
Jun. 2019, p. 1,
https://indico.cern.ch/event/766611/book-of-
abstracts.pdf

[7] Continuous Delivery and Deployment of EPICS IOCs at
FRIB, in Proc. EPICS Collaboration Meeting 2019, Aix-en-
Provence, France, Jun. 2019, pp. 1-2,
https://indico.cern.ch/event/766611/book-of-
abstracts.pdf

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUDPP03

Control System Infrastructure
TUDPP03

851

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

