
ICS INFRASTRUCTURE DEPLOYMENT OVERVIEW AT ESS

B. Bertrand∗, S. Armanet, J. Christensson, A. Curri, A. Harrisson, R. Mudingay, ESS, Lund, Sweden

Abstract

The ICS Control Infrastructure group at the European

Spallation Source (ESS) is responsible for deploying many

different services. We treat Infrastructure as code to deploy

everything in a repeatable, reproducible and reliable way.

We use three main tools to achieve that: Ansible (an IT au-

tomation tool), AWX (a GUI for Ansible) and CSEntry (a

custom in-house developed web application used as Config-

uration Management Database). CSEntry (Control System

Entry) is used to register any device with an IP address (net-

work switch, physical machines, virtual machines). It allows

us to use it as a dynamic inventory for Ansible. DHCP and

DNS are automatically updated as soon as a new host is

registered in CSEntry. This is done by triggering a task that

calls an Ansible playbook via AWX API. Virtual machines

can be created directly from CSEntry with one click, again

by calling another Ansible playbook via AWX API. This

playbook uses proxmox (our virtualization platform) API

for the VM creation. By using Ansible groups, different

proxmox clusters can be managed from the same CSEntry

web application. Those tools give us an easy and flexible

solution to deploy software in a reproducible way.

INTRODUCTION

The Integrated Control System Division (ICS) is an organ-

isational unit responsible for the control systems within the

European Spallation Source (ESS) facility, including control

systems for accelerator, target, neutron scattering systems

and conventional facilities. Within ICS, the Control Sys-

tem Infrastructure group is in charge to design, implement

and operate the IT infrastructure needed to reliably run the

Experimental Physics Industrial Control System (EPICS)

eco-system. As such we have a large number of networks,

physical devices and virtual machines to administer. To

make this task manageable by a limited team, we try to put

a lot of automation in place and treat infrastructure as code

to make deployment repeatable, reproducible and reliable.

We rely upon an internal GitLab [1] server to store all our

code and JFrog Artifactory [2] to host binary artifacts. We

do extensive use of GitLab’s integrated CI/CD pipelines for

continuous integration. Our deployment workflow is built

on Ansible [3] (an IT automation tool), AWX [4] (a GUI

for Ansible) and CSEntry [5] (a custom in-house developed

web application).

ANSIBLE

Ansible is an open-source configuration management, or-

chestration and application deployment tool. Its main goals

are simplicity and ease-of-use. It was developed by Michael

DeHaan and acquired by Red Hat in 2015.

∗ benjamin.bertrand@esss.se

Ansible Concepts

Ansible is agentless. Only Python and OpenSSH are

required on the managed nodes, the servers or network

devices you want to manage. The list of nodes that can

be accessed is defined in an inventory, which can be in

different format (YAML or ini). The inventory is also used

to organize the hosts in different groups as shown in Fig. 1.

Figure 1: Ansible inventory.

An Ansible playbook is a YAML file describing an or-

dered lists of tasks that are mapped to a group of hosts, as

illustrated in Fig. 2.

Figure 2: Ansible playbook.

Each task performs an action using a module, the unit of

code Ansible executes. Each module has a particular use. In

Fig. 2 example, the package module installs chrony using the

Operating System package manager (yum on CentOS) and

the systemd module starts and enables the chronyd daemon.

Those tasks are performed on the all group, a default group

that refers to all the hosts defined in the inventory. The

name of the task provides a human readable description that

is displayed by Ansible when running it. As you can see,

playbooks are quite easy to read even for people not familiar

with Ansible.

Ansible provides a large number of modules to work with

files, database, package managers and even network devices.

There is probably a module for the action you want to per-

form. If not, you can always fallback to the command module

or even write your own. All Ansible modules are designed

to be idempotent, meaning that the second time a task is

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEAPP04

Control System Infrastructure
WEAPP04

875

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



run, nothing should change. Some care should of course be

taken to make a playbook idempotent, like when using the

command module. Idempotence is an important property

to make a system maintainable. A playbook can be split

in roles. A role is a pre-packaged unit of work that can be

reused and shared via Ansible Galaxy or git repositories. A

role defines tasks but doesn’t map them to any hosts.

Ansible At ESS

There are different ways to organize Ansible roles and

playbooks. At ESS we use mainly roles and our playbooks

only include roles by default, as demonstrated in Fig. 3.

Figure 3: ESS Ansible playbook.

Each role and playbook is stored in a separate git repos-

itory on our GitLab server. It makes roles easy to reuse

and enables us to pin their version using git tag. By con-

vention, the required roles for a playbook are stored in the

roles/requirements.yml file as shown in Fig. 4.

Figure 4: Playbook roles/requirements.yml.

This file is used by the ansible-galaxy command to down-

load the roles locally before to run the playbook.

Each role is tested using Molecule [6], a framework de-

signed to aid in the development and testing of Ansible roles.

Molecule makes it easy to run a playbook in a Docker con-

tainer or Vagrant box for local testing. It verifies the role

syntax, takes care of setting the needed instances to run it,

ensures it is idempotent, checks Ansible best practices by

running ansible-lint [7] and even run some tests on the de-

ployed instance with Testinfra [8]. Testinfra is a framework

that helps to write unit tests in Python to test the actual state

of a server configured by a management tool as demonstrated

in Fig. 5.

This can help ensure that the role did what you expected.

Molecule encourages an approach that results in consistently

developed roles that are well-written, easily understood and

maintained.

AWX

Ansible is a command line tool. It doesn’t require a sin-

gle controlling machine. Playbooks can be run from any

Figure 5: Testinfra tests.

machine that has the proper credentials and access to the

nodes to manage. While this is nice and one of the thing that

makes Ansible easy to start with, for production use, having

a central server has many benefits. AWX is a web-based

user interface for Ansible. It allows us to centralize all our

jobs, keep the credentials required to access managed nodes

safe, use role based access and log all the events that oc-

curred. AWX also provides a REST API to trigger Ansible

jobs remotely. Figure 6 shows a screenshot:

Figure 6: AWX.

Jobs can be triggered with one click from the web interface.

Access can be given to non expert users who don’t need to

know anything about Ansible.

In AWX, a project is a collection of Ansible playbooks

that are usually placed into a source code management sys-

tem like Git. A job template is the combination of an Ansi-

ble playbook (from a project) and the parameters required to

launch it: inventory, credentials.. As we store each playbook

in its own git repository, a project is basically identical to

a playbook for us. A project always points to the master

branch of the git repository and is automatically updated

before to launch the associated job template. The master

branch is thus considered stable. This is because roles are

always pinned to a specific version as we saw in Fig. 4. Up-

dating those versions could be a bit cumbersome. This is

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEAPP04

WEAPP04
876

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



why this is done by a GitLab bot: galaxy-bot [9]. The bot lis-

tens to webhooks events. When a tag is pushed to a role, the

galaxy-bot creates a merge request to update the role version

in each playbook using that role. If the molecule tests pass,

the merge is accepted. If not, an e-mail is sent to the author

who pushed the tag. The bot also automatically creates a

new project in AWX when a new playbook repository is

pushed to GitLab. galaxy-bot is based on gidgetlab [10], a

Python framework to interact with GitLab API and to write

GitLab bots: applications that run automation on GitLab,

using GitLab WebHooks and API.

CSENTRY

CSEntry, which stands for Control System Entry, is a

web application developed using Flask [11], one of the most

popular Python web frameworks. It is used to register all de-

vices with an IP address (network switch, physical machines,

virtual machines). Figure 7 shows a screenshot:

Figure 7: CSEntry.

CSEntry is a typical Flask application. It uses Post-

greSQL [12] as database and SQLAlchemy [13] as Object

Relational Mapper. Elasticsearch [14] is used for indexing

and search. Background jobs are handled by RQ [15] (Re-

dis [16] Queue), a simple Python library for queuing jobs.

Long running processes are queued in Redis and processed

by workers to avoid blocking the web server. The same Redis

instance is also used for some caching. CSEntry also pro-

vides a REST API to retrieve information or register devices

programmatically.

CSEntry is used as a configuration management database

and our Ansible main dynamic inventory. It contains all

our networks and hosts with their IP addresses. Ansible

variables and groups can be defined like in a standard Ansible

inventory. Groups of groups are also supported. Default

groups are static and hosts have to be manually assigned

to them. The application also has the notion of dynamic

groups for networks, network scopes or device types. If a

dynamic group of type network is created with the name of

an existing network, like utgard-dev, all hosts part of that

network are automatically added to this group. This is a

powerful way to group hosts and assign variables to them.

Ansible Dynamic Inventory

AWX can use a custom script as dynamic inventory source.

The script has to return a defined JSON-encoded dictionary

with a list of groups and hosts. This is what the csentry-

inventory [17] script does using CSEntry’s API. This script

makes the CSEntry inventory available and ready to use in

AWX. The inventory script automatically populates some

variables for every host as the example in Fig. 8 shows.

Thanks to those variables, a playbook can access informa-

tion about any host, and not only the ones targeted by that

playbook.

Figure 8: Host inventory variables.

Core Services Update

When registering a host in CSEntry, two tasks are trig-

gered:

• an inventory sync

• an update of the core services

Those background jobs are processed by RQ workers.

Commands are sent to AWX using the REST API and the

ansible-tower-cli [18] library. The status of each task and

a link to the AWX job is kept in the postgres database as

shown in Fig. 9.

Figure 9: CSEntry tasks.

The update of the core services launches a workflow tem-

plate (Fig. 10) to update the DHCP, DNS and Radius [19]

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEAPP04

Control System Infrastructure
WEAPP04

877

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



servers. A workflow template in AWX is a combination of

job templates to run several playbooks in parallel or based

on some dependency.

Figure 10: AWX core services update.

For each service (DHCP, DNS and Radius), the full con-

figuration is re-generated by an Ansible playbook using the

inventory. We saw earlier in Fig. 8 that all required infor-

mation (IP, network, vlan id, MAC address, hostname) was

populated as host variables by the csentry-inventory script.

Fig. 10 shows two playbooks to update the DNS. For per-

formance reason, the update-dns playbook doesn’t check

for new subnets. If a machine was just added to a new

subnet, this fast job will fail and the update-dns-full one

will be triggered. This demonstrates how some jobs can be

triggered based on the result of another one in a workflow.

When update-dns is successful, the update-dns-full job is

not run. The Radius servers are used to automatically assign

switches ports to a VLAN id based on the MAC address of

the connected device. It simplifies the network switches con-

figuration and enables users plugging a device to different

ports and still being connected to the proper VLAN.

The inventory synchronization is in fact triggered every

time a change impacts a group or host in CSEntry’s database.

This is done using SQLAlchemy event listeners. To avoid

unnecessary jobs, there can be only one running task and

one waiting in queue. If an inventory update task is already

in queue, the change won’t trigger a new job. For the core

services update, the principle is the same but the trigger is

only on interface change.

Virtual Machine Creation

Once a Virtual Machine has been registered, it’s possible

to create it with one click from CSEntry’s view host page

represented in Fig. 11.

Clicking on the Create VM button will enqueue a job to

launch a template on AWX. This playbook uses Proxmox VE

[20] REST API to create the Virtual Machine, as represented

in Fig. 12.

Proxmox VE is a complete open-source platform for en-

terprise virtualization. It is based on KVM hypervisor. It

can scale out to a large set of clustered nodes, includes a

web-based management interface as well as a REST API.

We have several clusters for isolation purpose. By default,

we target the cluster to deploy to based on the domain of

the VM. We can also force a specific cluster by setting the

proxmox_availability_zone Ansible variable.

Figure 11: CSEntry view host.

Figure 12: CSEntry VM creation.

Physical Machines

For physical machines, an autoinstall server is available to

perform network installation via PXE boot. From CSEntry,

the boot profile can be selected as shown in Fig. 13.

Figure 13: Boot profile selection.

Clicking on the Set boot profile button launches a task on

AWX that updates some links on the autoinstall server to

ensure the MAC address of the machine points to the chosen

profile. After this step, the machine has to be manually

rebooted and set to boot from the network. The installation

will start automatically. At the end, the link is set back to

local boot to make sure the machine is not re-installed at

next reboot.

Application Deployment

For most applications, the deployment is performed di-

rectly from AWX. Playbooks usually target a specific group.

That group shall first be defined in CSentry and assigned to

the required hosts. Once done, the appropriate job template

can be launched from AWX web interface. This makes it

very easy to deploy an existing application to a new instance.

Note that some applications are deployed automatically from

GitLab CI using AWX REST API with the tower-cli tool.

Thanks to AWX role-based access control, users not part of

the infrastructure group can safely be given permissions to

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEAPP04

WEAPP04
878

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



deploy their application, without requiring to share any ssh

keys.

CONCLUSION

The tools and workflow put in place allow us to deploy

our infrastructure in a repeatable, reproducible and reliable

way. Ansible and AWX are both easy to use and powerful.

Molecule enforces us to follow best practices and write roles

in a consistent and maintainable way. Developing our own

web application gives us a lot of flexibility. We can give

users the means to register and deploy the services they need

without creating tickets and waiting for us to handle them.

CSEntry is customized to our needs but the principles are

quite general and replacing some part of the system shouldn’t

be too difficult. Note that this solution is for small scale and

is of course not intended to replace a system like OpenStack,

which is more powerful but also more complex to maintain.

REFERENCES

[1] GitLab, https://about.gitlab.com

[2] JFrog Artifactory, https://jfrog.com/artifactory

[3] Ansible,

https://docs.ansible.com/ansible/latest/index.

html

[4] AWX, https://github.com/ansible/awx

[5] CSEntry,

https://gitlab.esss.lu.se/ics-infrastructure/

csentry

[6] Molecule, https://molecule.readthedocs.io

[7] ansible-lint,

https://docs.ansible.com/ansible-lint

[8] Testinfra, https://testinfra.readthedocs.io

[9] galaxy-bot,

https://gitlab.esss.lu.se/ics-infrastructure/

galaxy-bot

[10] gidgetlab, https://gidgetlab.readthedocs.io

[11] Flask, https://flask.palletsprojects.com/

[12] PostgreSQL, https://www.postgresql.org

[13] SQLAlchemy, https://www.sqlalchemy.org

[14] Elasticsearch,

https://www.elastic.co/guide/en/

elasticsearch/reference/current/

elasticsearch-intro.html

[15] RQ, http://python-rq.org

[16] Redis, https://redis.io

[17] csentry-inventory,

https://gitlab.esss.lu.se/ics-infrastructure/

csentry-inventory

[18] Tower CLI, https://tower-cli.readthedocs.io

[19] Radius, https://www.gnu.org/software/radius/

[20] Proxmox VE,

https://www.proxmox.com/en/proxmox-ve

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEAPP04

Control System Infrastructure
WEAPP04

879

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


