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Abstract
To achieve a tight integration of instrument control and

(online) data analysis, the European XFEL decided in 2011
to develop Karabo, a custom control and data processing
system. Karabo provides control via event-driven commu-
nication. Signal/slot and request/reply patterns are imple-
mented via a central message broker. Data pipelines for e.g.
scientific workflows or detector calibration are implemented
as direct TCP/IP connections. The core elements of Karabo
are self-describing devices written in C++ or Python. They
represent hardware, orchestrate other devices, or provide
system services like data logging and configuration storage.
To operate Karabo, a Python command line interface and a
generic GUI written in PyQt are provided. Control and data
widgets compose Karabo scenes that are provided by devices
or are manually customized and stored together with device
configurations in a central database. Since 2016, Karabo is
used to commission and operate the currently three photon
beam lines and six scientific instruments at the European
XFEL. This contribution summarizes the status of Karabo,
highlights achievements and lessons learned, and gives an
outlook for future directions.

INTRODUCTION
The European X-ray Free Electron Laser (EuXFEL) fa-

cility provides hard and soft X-ray beams via three photon
beamlines to six instruments. Up to 27,000 photon pulses per
second are arranged into 10 Hz trains of pulses at 4.5 MHz.
High-repetition-rate, large-area 2D imaging detectors capa-
ble of detecting images of scattered photons produced by a
single XFEL photon pulse create very high data rates. De-
tector data needs to be calibrated on-the-fly with low latency
to provide feedback to the experiment control.

In view of these requirements it was decided that a new
distributed control system, Karabo, with integrated data
acquisition and workflow capabilities should be designed
and developed. Hence, Karabo has been developed since
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early 2012 [1] and has been in use since September 2017 to
enable scientific user experiments at the EuXFEL [2].

KARABO IN A NUTSHELL
Karabo is designed to provide supervisory control and

data acquisition for the European XFEL. Hardware devices,
system services, and control procedures are represented by
Karabo software devices of which many can run within the
same server process, distributed among various control hosts.
Devices are self-describing their properties, commands, con-
figuration possibilities, and their availability depending on
the state of the device. This description can be expanded
at run-time, e.g. according to discovered hardware details.
Devices can expose that they have specific capabilities like
providing scenes or macros (see section on user interfaces)
or interfaces. An interface, e.g. as a motor or a camera,
defines a set of commands and properties.

Control communication is routed via a central broker. Cur-
rently, Karabo uses the the Java Messaging Service (JMS)
broker [3] that can be clustered. Large data from detectors
is transported via data pipelines implemented as direct TCP
connections. A graphical and a command line interface pro-
vide flexible ways to interact with a Karabo system that is
defined by a specific communication topic on the broker.
Temporary procedures can be implemented as macros that
run centrally on dedicated macro servers. Karabo’s graphi-
cal user interface (GUI) connects into the system via a TCP
connection to a gui server device.

An illustration of a Karabo system is shown in Fig. 1.

KARABO COMMUNICATION
A unique id identifies each object in a Karabo installation.

Uniqueness is ensured when registering to the installation.
Any message is routed via the broker according to this id.
The header of a message contains the name of a slot, i.e. a
method of the object that has been registered to be callable
remotely.

Two broker communication patterns are implemented: In
the request/reply case a (remote) slot is called and its success
or failure of execution received. Up to four slot arguments
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Figure 1: A Karabo installation showing Karabo devices with various tasks. Broker and pipeline communication lines are
indicated.

and return values are supported. These can be any serialis-
able data type (see Table 1) or the Karabo hash (see below).
In the signal/slot case a slot is subscribed to the signal of
any other object. If the signal is emitted, all subscribed slots
are called with the up to four arguments of the signal. Given
this publish/subscribe mechanism, Karabo is designed to be
event-driven and regular polling of properties is not needed.

By policy, slots with arguments are reserved for system
level communication. Commands that a device receives
are slots without argument or explicit return value. So the
Graphical User Interface (GUI) can represent any command
by a simple button. Commands implicitly return the state
that the device is in after slot execution.

The described broker communication is complemented by
Karabo’s pipeline system to form data workflows. Pipelines
directly connect devices via TCP to transport large data items
like camera images. Data that a device writes to its pipeline
output channel is sent to other devices that have their input
channels configured to receive that data. Although data is
sent only when an input channel reports readiness to receive
more data, buffering ensures that data item N + 1 can be
transmitted while item N is being processed.

Flexible configuration possibilities support workflows
with different purposes like low latency online data cali-
bration, reduced rate previews, parallelisation of computing
intense steps, and complete offline analysis:

• input channels can receive a copy of all data items or
share the items with other channels to distribute the
load,

• an input channel can receive data of several outputs,
e.g. to collect from shared processing,

• there are several ways an output channel should react in
case that it is faster than the receiving input channels:
drop items, queue them, or wait until the input channel
is ready,

• for a reduced rate preview, readiness to receive the next
data item can be artificially delayed.

KARABO IMPLEMENTATION
“We distinguish between the Karabo framework and

Karabo devices; where devices realise a particular func-
tionality through use of the Karabo framework. Besides test
devices, the framework contains a few devices to provide
system services. The object oriented Karabo framework is
implemented in C++11 and Python 3”[2]. Devices can be
implemented in three application programming interfaces
(APIs).

The C++ API is the suggested API for low-level interac-
tion with hardware or performance critical devices. Most of
the system service devices are implemented using this API.
The C++ server uses a multi-threaded event loop. Since
it starts devices as part of its single process, inter-device
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communication on the same server can bypass the broker.
Communication patterns are generally provided in a syn-
chronous and an asynchronous way, but for performance
reasons the use of the synchronous interface is generally
discouraged.

The bound Python API exposes the C++ API functionality
via the Boost C++ libraries [4] and their boost::python
bindings to the Python programming language. Its feature
set and function signatures mirror those of the C++ API,
allowing programmers to easily transition between APIs.

The middlelayer API is natively implemented in Python,
except that it relies on the openMQ(C) library for broker
communication. It has “no dependencies on the other two
APIs, and with the intention of being a pythonic interface,
following Python conventions and standards. This API of-
fers device proxies to comfortably control other software
components and is the recommended API for implementing
composition and aggregation of multiple devices. Coopera-
tive multi-tasking is implemented using Python’s asyncio
library providing a central event loop ensuring in-order ex-
ecution of tasks. Karabo’s macro scripting has been devel-
oped on top of this API.”[2]

The Karabo GUI is developed in PyQt and re-uses a frac-
tion of the middlelayer implementation. This pure Python
approach simplifies portability and the Karabo GUI is sup-
ported both on Linux and Windows.

Karabo Hash
“Karabo’s basic data structure is the so-called Karabo

hash. It is a hierarchical key/value container supporting
element-specific attribute assignment (also as key/value
pairs) and preserving insertion order. Keys are unique strings
that may contain a separator character, indicating nodes in
the hierarchy. The default separator is the dot (.), and thus
a key ‘this.is.karabo’ would refer to a leaf ’karabo’ located
under the subnode ‘is’ of the top-level node ‘this’. The val-
ues can take any type, but serialisation of a Karabo hash is
restricted to the types listed in”[2] Table 1 as well as com-
posite data types such as image and multi-dimensional array
(ndarray) data. “Serialization is supported to XML, HDF5
and ZeroMQ as well as to a proprietary binary format to be
used for communication within Karabo.”[2] Serialisation to
and deserialisation from this binary format is tuned to avoid
any copy of image and array data.

Table 1: Plain C++ Data Types Used by Karabo Serialisation.
Vectors thereof are also supported [2].

Boolean bool
Integer char (raw data),

(un)signed char (int8),
(unsigned) short (int16)
(unsigned) int (int32),
(unsigned) long long (int64)

Float float (float32), double (float64)
Complex complex<float>, complex<double>

String string

Unified States
To ease implementation, Karabo does not require that

devices implement a strict finite state machine. Nevertheless,
all devices must define a list of states as a subset of Karabo’s
unified list of states. Figure 2 shows Karabo’s base states
with their inheritance tree and the colours used to represent
the states in the GUI. Many more states inherit from these
base states. Inheritance means further specification and
inheritance of the representing colour if not already specified.
Commands are intended to trigger the transition from one
state to another. The self-description of the device defines
which commands the device accepts and which properties
can be changed, depending on the state of the device. All
APIs provide mechanisms to aggregate the states of several
devices, i.e. to define the most significant of them.

UNKNOWN

DISABLED ERROR

INITKNOWN

NORMAL

STATIC

PASSIVE ACTIVE

RUNNING CHANGING

ACQUIRING PROCESSING DECREASING INCREASING

Figure 2: Overview of Karabo’s basic unified states and their
inheritance relation to one another [2].

USER INTERFACES AND MACROS
The use and control of a Karabo system is facilitated by

a generic GUI and a command line interface (CLI). The
CLI is named iKarabo as it is a light customisation of the
IPython shell and directly interacts with the broker. The
interaction of the GUI with the system is mediated by a TCP
connection to a dedicated GUI server device and thus allows
remote access via SSH tunnelling. The GUI server device
also takes care to shield the clients from data rates higher
than what they can process or what the human eye can follow.
By default, updates are sent to clients with a maximum rate
of 2 Hz. For the usually big pipeline data, the client has in
addition to confirm that it processed it before the next update
will be sent.

The GUI is a multi-purpose application with detachable
panels (see Fig. 3) to

• acquire an overview of all servers, devices and alarm
notifications of a Karabo system,

• configure, instantiate and operate devices,
• edit and run macros,
• edit and view scenes as customiseable collections of

graphical elements to intuitively display and if desired
also modify properties, including data from Karabo
pipelines,
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a b c

d e

Figure 3: Karabo’s graphical user interface. The tool tip shows the device property displayed by the widget.

• store device configurations, macros and scenes in the
project data base,

• and run a CLI.
The navigation panel [Fig. 3(a)] offers two views of the

Karabo topology. The four levels of the tree of the search-
able and filterable system topology are the computer hosts,
the Karabo servers they run, the devices classes that these
servers are aware of and the running devices of these classes.
The device topology shown in the figure is adapted to the
EuXFEL device naming convention that requires device ids
to be composed of three parts separated by slashes ’/’. A
tree view of all devices is displayed, with three levels repre-
senting the three parts of the ids.

The configuration editor panel [Fig. 3(c)] shows all prop-
erties and commands of a selected device and gives access to
their descriptions, types, default values, alarm limits, value
ranges, and time stamps. For online devices, commands
and property reconfigurations can be applied if the current
device state does not prohibit that.

“The project panel provides access to the database of
available projects” and to edit them. “Once a project has
been selected and loaded, the panel [Fig. 3(d)] shows the
components of a project: subprojects (in bold face), macros,
scenes, device servers, and one level down devices and de-
vice configurations.” [2]

The notification panel [Fig. 3(e)] is subdivided into a
number of tabs to display log messages, to give an overview

of currently active alarms (see below), and to provide access
to a CLI running on the macro server.

The central panel [Fig. 3b)] is dedicated to scenes and
macros.

“A Karabo scene is a collection of graphical elements
to intuitively display and if desired also modify properties.
A rich set of widgets are provided by Karabo, including
state-aware coloured icons, trend lines, spark lines, bit fields,
XY-plots, analogue gauges, knobs, sliders and image dis-
plays” [2] as well as command buttons and links to other
scenes. Since the development cycle of widgets dedicated
to special procedures may be shorter than that of the Karabo
GUI, it is possible to extend the list of widgets by loading
so-called GUI-extensions at run-time. “A scene can be cre-
ated by dragging-and-dropping properties and commands
from the configuration panel into the desired locations. This
is called the design mode. When the design of a scene is
completed, a scene can be locked so that type, position and
geometry of widgets cannot be modified any further. This
is referred to as the control mode and is the default mode
for all SCADA operations.” [2] Besides being edited in the
GUI, scenes can also be provided by devices that have the
according capability.

Macros are meant for automation of recurring tasks. They
are executed remotely on the dedicated macro server. Their
standard output is captured and displayed in the bottom part
of the macro panel.
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Besides the generic GUI, Karabo provides executables to
open selected panels or scenes only.

SYSTEM SERVICES
The backbone of a Karabo installation consists of several

system services that are implemented as devices or are dedi-
cated servers. The GUI server device and the macro server
have been mentioned above. A project database manager
device encapsulates the communication to the database used
to store projects. Further services are detailed out below.

Data Logging
To understand any incident in a controlled system, it is

of utmost importance to record the properties of all devices
and to make their history easily available. Karabo’s data
logging is implemented by a manager device that distributes
the tasks to specific logger and reader devices that run on a
configurable number of servers. The servers can be run on
individual hosts to share the load.

Both GUI and CLI provide access to historic data in two
ways: all value updates of a single device property in a given
range in time or all properties of a device at a given point
in time. Currently, logged data is written to text files per
device. To speed-up reading, custom index files are created
per property. A prototype exists that replaces the file based
backend by a time series data base [5].

Data Acquisition
Selected pipeline data and the properties of selected de-

vices are stored for dedicated runs by the data acquisition
(DAQ) of the EuXFEL [6]. The data is stored in HDF5 files
and indexed according to the 64-bit id of the train it belongs
to. The indexing eases the correlation of data from different
sources.

The data of the big custom made detectors is sent to the
DAQ by 16 UDP based data streams, following the XFEL
Train Data Format protocol. The DSSC detector will provide
up to 800 images per train and thus data rates of 16 GB/s. So
far 600 images per train have been reliably stored. Online
monitoring of this data is made possible since the DAQ
provides data of a subset of the trains as Karabo pipeline
output.

The DAQ is implemented by Karabo devices that are not
part of the Karabo framework. This allows an independent
development cycle.

Alarm System
Karabo provides an integrated alarm notification system.

“Property-related alarm thresholds can be hard-coded or con-
figured at device initialisation time for scalar values. These
are evaluated at each property update on the device, resulting
in a new value v(t), such that for normal operations

Talarmlow
≤ Twarnlow ≤ v(t) ≤ Twarnhigh ≤ Talarmhigh

.

If the quantity v(t) goes beyond the low or high warning
thresholds, the distributed control system notifies of the

warning condition. . . . Alarms can be defined to require
acknowledgement, i.e. their notifications will not silently
disappear if the condition triggering the alarm passes.”[2]

Devices also have a global alarm condition that can be set
explicitly through device logic. It automatically evaluates
to the highest alarm condition of all property related alarms
and any explicit assignment. Besides the WARN and ALARM
levels, it can also take the INTERLOCK value that reflects
such a condition of an interlocking hardware.

An alarm service device keeps track of all active alarm
conditions and the dates of their first and most recent occur-
rences.

Scanning
Since still in active development, to quickly follow the

needs of the EuXFEL instruments, Karabo’s scanning func-
tionality is implemented as a device outside of the frame-
work. Through device provided scenes it is well integrated
with the GUI, but it can also be steered via the CLI. The
device relies heavily on device interfaces: The scanned axes
are the positions of one or several motors. Trigger sources
have to comply with the camera interface to be started and
stopped. Furthermore, up to six properties of any kind of
devices can be specified as data sources, e.g. processor de-
vices that calculate numbers from the data produced by the
trigger sources. The capabilities to preview data sources
with respect to the scanned motor positions are currently
extended to support not only scalar values, but also vectors.
Similar to SPEC [7], absolute (ascan, a1scan, etc.) and
relative scans (dscan, etc.) as well as mesh scans are sup-
ported. Continuous scans are in an experimental state. The
scan device is also well integrated with the DAQ which it
configures, starts and stops.

Due to the interaction with Karabo devices complying
with interfaces, the chosen approach is very flexible and
complex scan patterns can be easily achieved by preparing
virtual motor or specialised processor devices.

ACHIEVEMENTS
The Karabo control and data processing framework is used

to control the photon beam lines and scientific instruments of
the European XFEL since early commissioning end of 2016.
Meanwhile all six instruments have started user operation.
As of September 2019, almost 14,000 Karabo devices are
running at the EuXFEL and expose more than 1.6 million
control points, i.e. properties and commands. The devices
are distributed among 12 broker topics that usually resemble
an instrument or a beamline. The few cases where cross talk
between topics is needed, special devices duplicate informa-
tion from one topic to another using a connection to a GUI
server of the other topic.

A significant improvement with regards to X-ray beam
drift has been achieved by implementing a feedback mech-
anism based on a closed loop PID control algorithm in a
Karabo device [8]. Depending on the signal of a chosen
diagnostic detector, X-ray optical elements are aligned.
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The DAQ stored almost 9 PB of data of which about 6 PB
belong to experiments of external users. Online preview of
a fraction of the data produced by the big customised X-ray
detectors (AGIPD, LPD, DSSC) can be processed with a rate
of 1.792 GB/s. Special Karabo bridge devices complete the
involved calibration pipelines to send the data out of Karabo
via ZeroMQ such that user programmes can analyse it [9].
The latency from acquisition to ZeroMQ output is below 2 s.

Deployment of new framework releases in the control
network is usually scheduled during shutdowns of the accel-
erator, i.e. eight times in 2018 and 2019. Release integrity is
ensured by the high code coverage of the unit and integration
tests run during the development cycle, i.e. 67% and 74%
of the C++ and Python code base, respectively. In addition,
a dedicated release test cycle runs when finalising a release
and covers device code outside the framework as well.

LESSONS LEARNED
In early versions of Karabo development, serious delays

arose especially for big C++ servers hosting many hundreds
of devices or for pipelines with a high data throughput as
used for the online calibration.

The key ingredient to speed-up the big servers was to
avoid any blocking function calls on the common event loop
to prevent thread starvation. That means that in general
the asynchronous API for the request/reply pattern in inter-
device communication have to be used. Also, a mechanism
needed to be developed that enables a slot to delay its reply
to potentially run in another thread. This avoids blocking
when the reply requires a further request, e.g. to hardware.

If the Karabo C++ framework were to be rewritten from
scratch, one could provide simpler support for asynchronous
programming, e.g. by the use of coroutines as are funda-
mental to the success of the middlelayer interface, written
in single-threaded Python.

Although Karabo provides a C++ data container
(“NDArray”) for big array data that can adopt or view
raw memory and avoids data copies when binding to the
numpy.ndarray in Python, originally the data was copied
when serialising and de-serialising: A common buffer for
the NDArray and its meta data was used. The delaying data
copies are now avoided by adapting the interface of the seri-
alisation routines.

A problem that is noticed only under system stress is that
by simply posting messages on a multi-threaded event loop,
their execution order can get lost. Instead, first-in first-out
queuing is needed.

Since the Karabo system topology is fully dynamic, i.e.
no object knows which devices etc. exist, Karabo relies
on broadcast messages received by all objects, in particular
“instance new” or “gone” messages. But broadcast messages
scale badly between two servers with many hundreds of
devices each: If one server starts N devices and another
server has M devices up running, the “new” messages of the
N devices will be send to each of the M devices and their
server, resulting in N · (M +1) messages. For M = N = 500

this are 250,500 messages that pose a big load on the broker
and on the deserialisation on the receiver side that can lead
to delays of a minute. To overcome this, broadcast messages
are now only sent to the server that internally distributes
them to its M devices without any deserialisation overhead.

FUTURE DIRECTIONS
The primary goal of the Karabo framework is to serve a

smooth operation of the user experiments at the six EuXFEL
instruments. To further strengthen this support, four areas
of improvements for Karabo are currently discussed:

The text file based data logging backend shall be replaced
by using a time series database, namely influxDB [5]. This
will ease data exploration, e.g. using external tools.

Storing device configurations in projects is a very flexible
approach. While being beneficial in small installations, a
centrally managed configuration storage has been identified
as better applicable for fully comissioned components.

While Karabo’s design foresees an authentication and
authorisation mechanism to provide access restrictions, this
is not implemented yet. Now that more and more parts of
the system are stable, this becomes a limitation.

While the operation of the JMS broker turned out to be
very smooth, the openMQ(C) client library lacks an asyn-
chronous interface and is not well maintained. Therefore,
brokers supporting the AMQP and MQTT protocol have
been investigated. Especially MQTT provides features that
could be very beneficial for Karabo like retained messages
and the last will and testament. For the Karabo C++ API, a
prototype of the core communication class using the MQTT
protocol has already been implemented.

In parallel to the outlined improvements, the clean-up
of the dependencies to solve issues with conflicting open
source licences (namely GNUv2 and Apache 2.0) shall be
finished. That will allow to release Karabo to the public with
an open source licence as planned since the beginning. As
a result of the so far achieved refactoring, the Karabo GUI
can already be installed into a Conda [10] environment.

SUMMARY
Due to the specific needs to integrate experiment control

with workflow capabilities and high data rates, the European
XFEL decided to develop a new control system, Karabo.
Its core entity is the self-describing device that represents
hardware, is a workflow node, implements a system service
or orchestrates other devices. Control communication is
routed via a central broker. For workflows, data is sent
through flexible pipelines that use direct TCP connections.
All this is available through the generic GUI or the CLI.

Since 2016 Karabo is used to commission the facility
and to successfully conduct user experiments. The devel-
opment had to overcome few shortcomings to avoid severe
delays: Karabo nowadays communicates mainly using asyn-
chronous interfaces and avoids any unnecessary data copies.
Further improvements are planned in the areas of data log-
ging, storage of device configurations, and authentication
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and authorisation. Finally, Karabo is planned to be released
to the public using an open source software licence.
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