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Abstract 
Hadron Experimental Facility (HEF) is designed to han-

dle intense slow-extraction proton beam from 30-GeV 
Main Ring (MR) of Japan Proton Accelerator Research 
Complex (J-PARC). A total amount of 3.6E19 protons in 
the 2018 run were irradiated on the production target in 
HEF. In order to evaluate soundness of the production tar-
get, we have analysed long-term variation of temperature 
rise on the target, which can be affected by beam condi-
tions. Predicted temperature rise measured with thermo-
couples mounted on the target was calculated from the ex-
isting training data of beam intensity, spill length (duration 
of beam extraction in 5.2 second accelerator cycle), and 
beam position on the target, using a linear regression anal-
ysis with a machine learning library, scikit-learn. As a re-
sult, predicted temperature rise shows good agreement 
with the measured one. We have also examined whether 
the present method of the predicted temperature rise from 
the existing training data can be applied to the new data in 
the future runs. The present paper reports the current status 
of the measurement system of temperature rise on the tar-
get with machine learning in detail. 

INTRODUCTION 
Hadron Experimental Facility [1] (HEF) at Japan Parti-

cle Accelerator Research Complex (J-PARC), shown in 
Figure 1, is designed to handle intense slow-extraction pro-
ton beam from 30-GeV Main Ring (MR). The period of 
beam extraction from MR to HEF is 2 seconds and the op-
eration cycle is 5.2 seconds. 

 

Figure 1: An illustration of the HEF. 

 
 
 

Production Target 
The production target [2], currently using at the HEF, is 

made of a gold and a copper block with coolant stainless 
pipes, as shown in the Figure 2. Gold is chosen for high 
density, high thermal conductivity, and good chemical sta-
bility. The current target is designed to be capable for up to 
50-kW proton beams. The dimension of gold target is 15W 
×6H ×66L [mm]. The gold target is divided into 6 blocks in 
order to reduce thermal stress by beam irradiation. A dou-
ble-headed design enables to switch the one target to the 
other quickly and remotely on demand. The water coolant 
pipes, embedded in the copper block, are made of stainless 
steel to avoid erosion and corrosion. The gold target, the 
copper block, and the coolant pipes are bonded with a Hot 
Isostatic Pressing (HIP) process. The production target is 
enclosed with an airtight chamber filled with circulating 
helium gas. The beam entry and exit are covered with beam 
windows. 

In order to monitor temperature rise of the target, six 
thermocouples, named as TC1 to TC6, are mounted on top 
of each gold block along the beam direction. We also mon-
itor temperatures of the copper block, the water and helium 
gas pipes, and the edge of the beam windows. 

 
During continuous 50 kW beam operation, temperature 

on the target rise close to 342K, the allowable limit esti-
mated by a FEM stress analysis. In the point of soundness 
of the target, unexpected temperature rise by cumulative 
damage on the target may occur during a normal beam op-
eration. Thus, it is important for damage control of the tar-
get to distinguish an unexpected temperature rise by dam-
age from a normal drift due to fluctuation of beam condi-
tions.  

Recently, a number of machine-learning methods has 
been widely used in a variety of fields, and many easy-to-

 

Figure 2: A photograph of production target. 
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use libraries, such as scikit-learn, becomes popular. We 
have adopted a machine-learning method to calculate tem-
perature rise predicted from existing training data of vari-
ous beam conditions, and compared to those measured 
with real-time data. If a difference between measured and 
predicted temperature rise becomes significantly larger 
than usual, it may indicate that an unexpected temperature 
rise occurred by a sudden decrease of thermal conductivity 
between gold and copper blocks. In addition, it would be 
helpful to construct a warning system using predicted tem-
perature with more intense beam in future. 

The requirements with the linear regression analysis are 
as follows: 

• The required accuracy between measured and pre-
dicted temperature rise is sufficiently smaller than the 
margin between the nominal and the allowable tem-
perature on the gold blocks. According to the data dur-
ing the 2018 run, the difference between the allowable 
limit of temperature rise (342K) and the average tem-
perature rise (321K) was 21K, 6.5% of the average 
temperature rise. Therefore, 1% of accuracy on pre-
dicted temperature should be sufficient. 

• The required accuracy should be stable during at least 
one beam time lasting for a few months in order to use 
the predicted temperature as a signal for warning/in-
terlock system. 

 
Monitoring Device 

The current monitoring device is based on Programma-
ble Logic Controller (PLC) with a Linux-CPU working as 
an embedded EPICS IOC on Yokogawa's FA-M3 PLC 
platform [3]. Temperature of the gold target, the copper 
block, and cooling water are monitored with thermocouple 
measuring devices (F3CX04-0N) with 100 milliseconds 
sampling rate. Sampled data are stored in the data registers 
on a sequence-CPU, and an EPICS-IOC, running on the 
adjoint CPU module, can simultaneously take data from 
the sequence CPU via shared memory. The start and stop 
timing of temperature measurement are synchronized to 
beam extraction time, using an on-beam gate signal distrib-
uted from the accelerator timing control system. The sys-
tem of the monitoring PLC is shown in Figure 3 and Table 
1. The monitored data are displayed graphically on the 
screens in the control room, and stored with a standard EP-
ICS channel archiver [4] for data analysis. 

 

Figure 3: Photograph and illustration of the PLC. 

 
 
 
 

Table 1: Module List of the PLC 
Module Model number 
Sequence CPU F3SP71-4S 
Linux CPU F3RP71-2L 
A/D F3AD04-0R 
D/A F3DA04-0N 
Temperature monitoring F3CX04-0N 

ANALYSIS OF TEMPERATURE RISE 
WITH MACHINE LEARNING 

Linear Regression Analysis 
In order to calculate predicted temperature rise, shot-by-

shot data during a certain period of beam time have been 
used as training data for machine learning. Temperature 
rise on the production target depends dominantly on beam 
intensity, spill length (duration of beam extraction), and 
horizontal and vertical beam positions. Therefore, pre-
dicted temperature rise is supposed to be expressed as a 
linear function of these four parameters, shown in the equa-
tion (1). A linear regression analysis with an open-source 
Python library, scikit-learn [5], has been used for the pre-
sent analysis. T = αI + β 1S + γX + δY + ε      (1) 

where T is the predicted temperature rise, Ibeam is the beam 
intensity, S is the spill length, X is the horizontal beam po-
sition, Y is the vertical beam position. α, β, γ and δ are op-
timization coefficients, and ε is an intercept. The spill 
length is incorporated as a reciprocal because a shorter 
beam length gives higher temperature rise with a fixed in-
tensity. Beam intensity and positions are measured with a 
DC-Current Transformer (DCCT) in the Main Ring and a 
Residual Gas Ionization Profile Monitor (RGIPM) [6] in-
stalled at about 1 m upstream of the production target, re-
spectively. 

We have evaluated accuracy of predicted temperature 
rise with the linear regression analysis with an indicator, so 
called “coefficient of determination”. Coefficient of deter-
mination is given by the equation (2), R = 1 − ∑ (y − f )∑ (y − y)         (2) 

where R is the coefficient of determination, y is the meas-
ured temperature rise, y is the average of measured data in 
a beam period, and f is the predicted one. 

RESULTS AND DISCUSSIONS 
At first, we have calculated predicted temperature rise 

with the existing training data from January 27th to Febru-
ary 26th and those from June 2nd to 30th in 2018 in linear 
regression analysis.  

When a continuous beam operation suspends due to ma-
chine failures and/or warnings issued by the instruments in 
the accelerator and beam-lines. Temperature of the produc-
tion target drops down to that of the cooling water. After 
restart of continuous beam operation, it takes several shots 
of beam to resume nominal temperature on the target. In 
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order to avoid uncertainty in the analysis, every first 3 shots 
just after resuming beam operation have been eliminated 
from sampled data in the present analysis. 

Figure 4 shows a typical chart of temperature rise of TC4, 
which shows the maximum temperature rise among the six 
thermocouples on the gold blocks. A large shift on Febru-
ary 2nd in the chart is due to an artificial adjustment of spill 
length from 1.8 to 2.1 seconds in order to decrease the peak 
temperature on the target. Figure 5 shows a 1-D projection 
of Figure 4, and Table 2 indicates statistical means and 
standard deviations of 1-D projected distribution on each 
thermocouple (TC1-6). The statistical means are also ex-
pressed in percentage divided by the average temperature 
rise. All of mean value are within 0.2% of the averaged data, 
and fulfils our requirements. 

 

Figure 4: A typical chart of measured and predicted tem-
perature rise of TC4 from January 31th to February 7th in 
2018. Red and black point are measured and predicted 
temperature rise [K], respectively. 

 

Figure 5: An 1-D projection of the difference between 
measured and predicted temperature rise in the 2018 run. 

 
 
 
 
 
 
 
 
 
 

Table 2: Summary of 1-D Projections of All Thermocou-
ples 

Name Mean Standard  
deviation[K] [K] [%] 

TC1 0.09 0.07 0.92 
TC2 -0.42 0.17 1.66 
TC3 -0.07 0.02 2.44 
TC4 0.33 0.10 2.94 
TC5 -0.05 0.02 2.02 
TC6 -0.39 0.14 1.99 

 
To improve coefficient of determination, we have also 

examined to incorporate the temperature rise of TC1 to the 
present linear regression analysis. Figure 6 shows that add-
ing the TC1 data improves coefficient of determination by 
about 7%. 

 

 

Figure 6: A bar chart of coefficient of determination. Blue 
and green bars are coefficient of determination calculated 
from the data with and without adding temperature rise of 
TC1, respectively. 
 

The statistical means and standard deviations of the an-
alysed data are summarized in Figure 7. Both means and 
standard deviations on all thermocouples have been im-
proved by adding the TC1 data. The present result may in-
dicate that TC1 would represent more precise information 
about the total amount of heat-deposit on the target rather 
than that provided by the beam intensity monitor. In the 
following results, TC1 data are always included in the lin-
ear regression analysis. 
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a) Mean. 

 
b) Standard deviation. 

Figure 7: Bar charts of statistical means and standard devi-
ations on all thermocouples in the 2018 run. Predicted tem-
perature rise is calculated from the training data with TC1. 
 

Generalization Performance 
We have also studied whether the present method can be 

applied to unknown data in the future runs, so called as 
generalization performance. We have investigated two 
methods as follows: 

A) Applying the function evaluated by the training 
data in a certain beam operation to the fresh data 
obtained in the next. 

B) Applying the function evaluated by the training 
data accumulated during several hours at the be-
ginning of a certain beam operation to the new data 
obtained in the remaining beam operation. 

The training data of the linear regression analysis using 
both methods are comprised of beam intensity, spill length, 
beam positions and temperature rise of TC1. 

In the method A), the function evaluated by the existing 
training data in the 2018 run has been applied to the fresh 
data from February 11th to March 18th in 2019. 

Figure 8 shows a typical chart on TC3, and Table 3 indi-
cates statistical means and standard deviations of all ther-
mocouples. Predicted temperature rise is not in good agree-
ment with the measured one, especially on TC3, 4 and 6. It 
might result from different beam optical and parameters of 
the accelerators between the 2018 and 2019 run. 

 
Figure 8: A typical chart of measured and predicted tem-
perature rise of TC3 from March 1st to 7th in 2019. Black 
point is measured temperature rise. Red point is predicted 
temperature rise calculated from the training data in the 
2018 run. 

 

Table 3: Summary of 1-D Projections. 

Name Mean Standard 
deviation[K] [K] [%] 

TC2 0.90 0.39 0.99 
TC3 -7.09 2.33 2.53 
TC4 5.97 1.84 3.14 
TC5 2.46 0.82 2.68 
TC6 6.00 2.14 2.59 

 
In the method B), the function evaluated by the training 

data accumulated for 0.5 - 12 hours from the beginning of 
the beam operation on March 1st in 2019 has been applied 
to the data obtained until March to 7th. Table 4 shows the 
duration and the number of the training data. 

 

Table 4: Duration and Number of Training Data. 

Duration 
[hours] 

Number 
of data 

0.5 94 
1 440 
2 1104 
3 1732 
6 3791 

12 7776 
 
Figure 9 shows a scatter plot of coefficient of determina-

tion and the number of the training data. The larger number 
of the training data gives the better Coefficient of determi-
nation. 

Figure 10 shows a typical chart on TC3. Accuracy of pre-
dicted temperature rise has been improved, compared to 
Figure 9. 
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Figure 9: A scatter plot indicating coefficient of determina-
tion and the number of data. Horizontal and vertical axes 
are the number of data and coefficient of determination, re-
spectively. 

Figure 10: A typical chart of measured and predicted tem-
perature rise of TC3 from 1st to 7th in March 2019. Black 
point is measured temperature rise. Red point is predicted 
temperature rise [K] calculated from the data for 2 hours 
just after the start of beam operation. 

The statistical means and standard deviations of 1-D pro-
jected data are summarized in Figure 11. Means and stand-
ard deviations have been improved as the number of the 
training data increases. The result shows accumulating 
more than 3000 data as a set of training data would be suf-
ficient for the analysis in the method B). The present com-
parison shows that the method B) works better than the 
method A), and the result suggests that we should accumu-
late data for more than 6 hours. However, we also prepare 
predicted temperature rise with the method A) for any con-
tingency. 

 
 
 
 
 
 
 
 
 
 
 

 

a) Mean. 

 
b) Standard deviation. 

Figure 11: Scatter plots of statistical means and standard 
deviations as increasing number of the data points in 
2019. Horizontal axis is the number of training data. 

CONCLUDING REMARKS 
A Python machine learning library, scikit-learn, has 

been applied to evaluate a function of predicted temper-
ature rise on the production target for damage control, 
using accumulated data of beam intensity, positions, 
spill length, and the TC1 thermocouple. Predicted tem-
perature rise shows good agreement with measured one 
in the 2018 run. 

The function of predicted temperature rise evaluated 
by the data accumulated for more than 6 hours at the be-
ginning of a beam period could be applicable to predict 
the unexpected temperature rise in the remaining beam 
operation. 
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