
PROJECT Nheengatu: EPICS SUPPORT
FOR CompactRIO FPGA AND LabVIEW-RT

D. Alnajjar∗, G. de S. Fedel, J. R. Piton,
Brazilian Synchrotron Light Laboratory, Campinas, Brazil

Abstract
A novel solution for integrating EPICS with Compact

RIO (CRIO), the real-time embedded industrial controllers
by National Instruments (NI), is proposed under the name
Nheengatu (NHE). The CRIO controller, which is equipped
with a processor running a real-time version of Linux (Linux-
RT) and a Xilinx Kintex FPGA, is extremely powerful for
control systems since it can be used to program real-time
complex data processing and fine control tasks on both the
Linux-RT and the FPGA. The proposed solution enables
the control and monitoring of all tasks running on Linux-
RT and the FPGA through EPICS. The devised solution is
not limited to any type of CRIO module, setup or combi-
nation of modules. Its architecture can be abstracted into
four groups: FPGA and LabVIEW-RT interface blocks, the
Nheengatu library, Device Support and IOC. The Nheengatu
library, device support and IOC are generic - they are com-
piled only once and can be deployed on all CRIOs available.
Consequently, a setup-specific configuration file is provided
to the IOC upon instantiation. The configuration file con-
tains all data for the devised architecture to configure the
FPGA and to enable communication between EPICS and
the FPGA/LabVIEW-RT interface blocks.

INTRODUCTION
Experimental Physics and Industrial Control System

(EPICS) [1] is an open-source set of libraries that helps
building distributed soft real-time control systems for sci-
entific instruments, like the ones that are used in the LNLS
UVX beamlines [2], and those to be used in SIRIUS [3].
EPICS has been used to control LNLS experimental sta-
tions’ equipment. Consequently, using EPICS to control
CompactRIO (CRIO) [4] devices, the real-time embedded
industrial controllers by National Instruments (NI), would
be highly favourable.

The CRIO chassis contains a Xilinx FPGA and an Intel
processor running an NI version of Linux. It also contains
several slots where NI C-series modules containing periph-
erals can be plugged in. The peripherals can be accessed
by the FPGA (hardware) and the LabVIEW-RT (Linux real-
time operating system). Both the FPGA and LabVIEW-RT
can be programmed using a visual programming language
(LabVIEW) [5]. In that development environment, the user
develops a software (VI) where building blocks can be con-
nected to generate the desired circuitry to be implemented
on LabVIEW-RT or the FPGA. Whether the LabVIEW-RT
or the FPGA or both are chosen, it depends on the system’s
requirements. The FPGA can be used to perform high-speed
∗ dawood.alnajjar@lnls.br

processes and high-speed fine-control. LabVIEW-RT is
slower than FPGA; however, it provides the ease and power
of programming much more complex task limited by the
processor speed and memory.

EPICS runs on Linux or Windows, so hypothetically it
should run on the Linux-RT; however, extra libraries need
to be developed to allow access of variables available on the
FPGA or LabVIEW-RT. Several options developed by the
EPICS community/industry were proposed and are being
used. NI EPICS was developed by National Instruments [6],
which is good for simple demands; however, it is limited in
its functionalities. Consequently, IRIO [7] and CA LAB [8]
were developed. IRIO developed an EPICS device driver
to send and receive data to and from FPGA peripherals;
however, all peripherals connected to the CRIO platform
need to be supported by the library, and the library needs to
be recompiled with every new setup. CA Lab uses libraries
developed on top of LabVIEW-RT along with EPICS native
libraries. All variables need to pass through LabVIEW-
RT whether they belong to LabVIEW-RT or not, and it is
difficult to integrate the rest of EPICS support software with
this infrastructure (i.e. synApps [9]). For our use in SIRIUS,
it would be highly advantageous to our development/debug
cycle that the proposed solution can provide flexibility in
several aspects, and they are:

• Allow EPICS to read variables generated on the FPGA
VI, obtained from FPGA peripherals or generated on
LabVIEW-RT VI running on CRIO.

• Allow EPICS to write to variables on the FPGA VI,
that can be used internally or connected to a peripheral,
or LabVIEW-RT VIs running on CRIO.

• Ease of integration with synApps or any other soft-
ware intended to support the common requirements of
particle accelerator beamlines.

• The deploy process should be as simple as possible.
It is favourable that no compilation is necessary at all
during the deploy process.

Given the previous requirements, there was a need to re-
think a new solution that satisfies all these constraints and,
consequently, Nheengatu was born.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL002

Control System Infrastructure
WEMPL002

997

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

NHEENGATU
Nheengatu1 (NHE) is a complete solution proposed to

integrate EPICS into CRIO and to address all of the above
stated requirements. A block diagram of NHE is shown in
Fig. 1.

Figure 1: Nheengatu architecture

NHE can be divided into several layers as follows
• EPICS IOC: Software that will run in the CRIO host and

that will export all FPGA and LabVIEW-RT available
variables to the network though EPICS.

• NHE EPICS device support: Acts as an interface be-
tween the CRIO library and the IOC. Also, it provides
some functions to configure the CRIO library through
the IOC command terminal.

• NHE library: Library to handle all LabVIEW-RT and
FPGA variable reading and writing.

• NI FPGA library: Library provided by National Instru-
ments to access FPGA controls and indicators.

• LabVIEW-RT and FPGA VIs: LabVIEW application
that contains all application-specific implementations
whether they are fine-control state-machines, custom
logic, or direct connections to peripherals.

• INI configuration file: Contains all information and
addresses required for NHE to write/read to/from the
FPGA and LabVIEW-RT.

• C-series modules: Modules with peripherals that will
be plugged in the CRIO platform chassis.

Each component will be described more thoroughly in
the following sections. In the meantime, a summary of
the functionalities that are supported by NHE in the FPGA
and LabVIEW-RT is illustrated in Table 1. It shows all the
1 Nheengatu, is the name of an indigenous language in South America, from

the Tupi–Guarani language family. Nheengatu was the language that the
different indigenous peoples, the portuguese explorers, black slaves and
catholic missioners communicated with during the Brazilian colonial era.
The language name is derived from the words nheen (meaning ”tongue”
or ”to speak”) and katu (became gatu and meaning ”good”), resulting in
”good language” or ”easy language”.

variable types that NHE can read and write to and from the
FPGA VI, or from the LabVIEW-RT VI. A distinction is
being made between fixed-point analog and floating point
analog. The reason is that with fixed-point analog up to
52-bits of variable precision can be achieved. While in the
case of floating point analog, a precision of 23 bits can be
achieved; however, a wider range of numbers can also be
reached (1.175494351 E -38 ~ 3.402823466 E +38)).

Nheengatu Architecture Layers
In this subsection, the NHE architecture layers will be

described as follows:

C-series modules Any module that generates a
datatype compatible with the datatypes mentioned in Table
1 can be plugged in the CRIO and used. The data obtained
from the peripherals can also be preprocessed in the FPGA
or LabVIEW-RT before being handed over to NHE or vice
versa.

INI configuration file Configuration file that will be
passed to the NHE library upon the execution of the EPICS
IOC. This file contains all the necessary information for the
NHE library to discover the source and the destination of
the data to be read or written. Such information include:
the IP of the CRIO where the FPGA bitfile will be written
to, the Path of the bitfile, the shared memory path with the
LabVIEW-RT, whether or not it will use the shared memory
with the LabVIEW-RT, signature of the FPGA bitfile, name
of the bitfile, shared memory size, binary input 64-bit vari-
able address, binary input bit-name mapping, analog output
addresses, analog input addresses, binary output addresses,
list of scalers, addresses for scaler input and output ports,
waveforms and their addresses, fixed-point analog inputs
and outputs and their respective addresses.

LabVIEW-RT and FPGA VIs The FPGA VI has all
FPGA-specific logic. For the upper layers to be able to read
from and write to FPGA variables, the variables must be
defined in the FPGA VI in the form of scalars or arrays of
controls (write) and indicators (read). These indicators and
controls can be read from or written to through the Linux-RT
using the NI FPGA C API library.

For the Scaler EPICS record, RTL was developed, and im-
ported into LabVIEW as an IP and used as the bases Scaler
pulse counter (digital) and Scaler integrator (analog). As per
the LabVIEW-RT VI, all the input and output variables are
exchanged with the NHE library using interprocess commu-
nication (shared memory). A polymorphic VI library was
developed to handle all interactions with the shared memory.

NI FPGA library The NI FPGA library is a wrapper
to all NI functions that communicate with the FPGA. This
set of functions was compiled into a dynamic library and
used accordingly.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL002

WEMPL002
998

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

Table 1: Nheengatu Capabilities

Type FPGA LabVIEW-RT

Read Single, Fixed-point, Boolean, Arrays Double, Single, I8, I16, I32, I64, U8, U16, U32, U64, Boolean, Arrays
Write Single, Fixed-point, Boolean Double, Single, I8, I16, I32, I64, U8, U16, U32, U64, Boolean
Scaler 64 Counters - digital or analog -

NHE library The NHE library is the core of the Nheen-
gatu implementation. It abstracts all interactions with the
FPGA and LabVIEW-RT VIs. Any data point is accessed
using just a name (key), and the location of this data point is
transparent to the upper layers. For the NHE library to know
where to access, it needs to be provided with the configu-
ration file at run-time, and that contains all the necessary
information. The library provides checks on naming, and
throws exceptions when needed.

NHE EPICS device support The NHE EPICS device
support layer is responsible for converting the IOC com-
mands to NHE functions. Six types of device supports were
developed, and are believed to cover all the required need
by SIRIUS, and are: Binary input, binary output, analog
input, analog output, Scaler, and Waveform device support.
These device supports are responsible for calling the respec-
tive input or output functions provided by the NHE library
upon request by the IOC. The device support also provides
functions to the IOC to configure NHE using the configura-
tion file, and these functions can be executed from the IOC
command terminal.

EPICS IOC The EPICS IOC is responsible for passing
the configuration file to the NHE library. In the EPICS
IOC database files, all the variables that the IOC wishes to
exchange with the bottom layers should be defined using the
EPICS IOC database standards. After the initialization of
NHE, the IOC loads the database files and initializes the IOC.
At this point, all the variables in the database files should be
exported to the network through EPICS.

Minimum User Intervention
The architecture was developed so that there is little user

intervention required. In most general cases, the user needs
to generate the configuration file, the IOC template substitu-
tions, along with the FPGA and LabVIEW-RT VIs. In some
cases, if the IOC pre-defined templates are not sufficient and
require modifications, the IOC may need to be compiled as
well.

Nheengatu Integration with Support Software
Compatibility with support software such as synApps

has not been broken since the standard EPICS IOC and
EPICS device support design flow has not been violated.
The procedure to add support software to the NHE IOC is
the same as that of any IOC (add the path of the support
software to the IOC makefiles and compile the IOC).

Further Automation
To further automate the process of deployment, python

scripts to automatically generate the setup-specific configura-
tion and the IOC template substitution files were developed.
This does not only improve the deployment flow, but also
drastically eliminates human errors and debug time since
the configuration file contains many error-prone details of
that specific setup.

Deploy Flow
It is important to remember that simplicity is one of our

main objectives of developing NHE. For that purpose, the
deploy flow should be as simple as possible. The approach
adopted uses Network File System (NFS), where EPICS
base, synApps modules, NHE library, NI FPGA Library and
NHE device support are on the NFS. It is important to note
that none of the NHE libraries need to be compiled and are
generic. What changes between one CRIO setup and another
is the configuration file, the IOC database substitutions and
the FPGA bitstream. Given that the CRIO is configured to
see the NFS and all the dynamic libraries are seen by the
Linux-RT, the deployment flow is shown in Fig. 2.

Figure 2: Nheengatu deploy flow

It can be seen that at no point there is a need to compile
code. The configuration file is passed to the IOC during
run-time and NHE becomes aware of available data points
whether for reading or writing and whether from the FPGA
VI or from the shared memory of the LabVIEW-RT VI.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL002

Control System Infrastructure
WEMPL002

999

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

NHEENGATU IN ACTION
NHE was tested with software of the following versions:

LabVIEW 2018 32-bit sp1, VI package manager 2018 f2,
LabVIEW 2018 FPGA Module Xilinx Compilation Tool
for Vivado 2017.2, FPGA Interface C API 18.0, LabVIEW
2018 Real-Time Module, EPICS 3.15.6, Synapps R6.0, NI
Linux Inter-process communication v.1.5.1.19 (NI package
manager), CRIO firmware version 6.5.0f0. Initial tests were
done with both CompactRIO 9035 and CompactRIO 9045.
NHE was permanently deployed in the XAFS1 (X-Ray Ab-
sorption and Fluorescence Spectroscopy) beamline of the
UVX at LNLS to substitute the National Instruments PXI
system previously used. So far the solution has shown an
excellent performance.

CONCLUSION
The Nheengatu architecture for integrating EPICS with

CRIO was proposed. Nheengatu enables the control and
monitoring of all tasks running on Linux-RT and the FPGA
through EPICS. The devised solution is extremely flexible
and is not limited to any type of CRIO C-series module. The
Nheengatu library, device support and IOC do not need to
be compiled for every new CRIO setup. Setup details are
all specified in a setup-specific configuration file and IOC
database substitutions file that is only used at IOC runtime.
The development and deploy procedure was simplified as
much as possible. The devised architecture is believed to be
the simplest-to-use and most flexible solution of integrating
the CRIO controller with EPICS that exists up to date.

ACKNOWLEDGEMENTS
The authors would like to gratefully acknowledge the

Brazilian Ministry of Science, Technology, Innovations and

Communications for financial support. The authors also
would like to thank the Brazilian Synchrotron Light Lab-
oratory (LNLS), specially the Beamline Software Group
(SOL), namely: Luciano Guedes, Douglas Araújo, Marcelo
Moraes, George Kontogiorgos, Lais Carmo, Allan Bugyi,
Pedro Hirasawa, Gabriel Previato and Gustavo Aranha for
their technical support and feedback.

REFERENCES
[1] EPICS:Experimental Physics and Industrial Control System,
https://epics.anl.gov/

[2] UVX - LNLS, https://www.lnls.cnpem.br/uvx-en/

[3] A. R. D. Rodrigues et al., “Sirius Light Source Status Report”,
in Proc. IPAC’18, Vancouver, Canada, Apr.-May 2018, pp.
2886–2889. doi:10.18429/JACoW-IPAC2018-THXGBD4

[4] CRIO: National instruments Compact RIO, http://www.ni.
com/pt-br/shop/compactrio.html

[5] LabVIEW, https://www.ni.com/pt-br/shop/labview.
html

[6] NI EPICS: National instruments EPICS solution, https://
www.ni.com/pt-br/innovations/white-papers/12/
introduction-to-epics.html#UsingEPICSinLabVIEW

[7] IRIO: IRIO Technology for advanced FPGA
data acquisition systems, http://www.i2a2.
upm.es/idi/instrumentacion-aplicada/
sistemas-de-adquisicion-de-datos-avanzados-2/
irio-technology/?lang=en

[8] CA Lab: LabVIEW + EPICS solution by HZB, https:
//www.helmholtz-berlin.de/zentrum/locations/
it/software/exsteuer/calab/index_en.html

[9] EPICS synApps support software, https://www.aps.anl.
gov/BCDA/synApps

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL002

WEMPL002
1000

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

