
PUSHING THE LIMITS OF TANGO ARCHIVING SYSTEM USING
PostgreSQL AND TIME SERIES DATABASES

R. Bourtembourg, S. James, J.L. Pons, P. Verdier, ESRF, Grenoble, France
G. Cuni, S. Rubio-Manrique, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain

G.A. Fatkin, A.I. Senchenko, V. Sitnov
BINP SB RAS and NSU, Novosibirsk, Russia

L. Pivetta, C. Scafuri, G. Scalamera, G. Strangolino, L. Zambon
Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy

M. Di Carlo, INAF - OAAB, Teramo, Italy

Abstract
The Tango HDB++ project is a high performance

event-driven archiving system which stores data with
micro-second resolution timestamps, using archivers written
in C++. HDB++ supports MySQL/MariaDB and Apache
Cassandra back-ends and has been recently extended to
support PostgreSQL and TimescaleDB 1, a time-series
PostgreSQL extension. The PostgreSQL back-end has
enabled efficient multi-dimensional data storage in a
relational database. Time series databases are ideal for
archiving and can take advantage of the fact that data inserted
do not change. TimescaleDB has pushed the performance
of HDB++ to new limits. The paper will present the
benchmarking tools that have been developed to compare
the performance of different back-ends and the extension of
HDB++ to support TimescaleDB for insertion and extraction.
A comparison of the different supported back-ends will be
presented.

INTRODUCTION
The HDB++ Tango archiving system [1] relies on the

Tango archive events feature to collect Tango attributes
values coming from one or several Tango Control Systems
and then store these values in the Database back-end of your
choice. The following back-ends are currently supported:
MySQL/MariaDB, Cassandra, PostgreSQL, TimescaleDB
and Elasticsearch. This list could be easily extended, thanks
to the layered design of the HDB++ architecture.

HDB++ DESIGN
The HDB++ Tango archiving system relies on two main

components:

• The EventSubscriber Tango device server which
subscribes to Tango archive events for a list of Tango
attributes and store the received events in a database

• The ConfigurationManager Tango device server which
simplifies the archiving configuration and management

An abstraction library, named libhdb++ decouples the
interface to the database back-end from the implementation.
To be able to store data to a specific database back-end,
1 https://timescale.com

the EventSubscriber and the ConfigurationManager Tango
devices dynamically load a C++ library implementing the
methods from the libhdb++ abstract layer. The libhdb++
back-end library is selected via a Tango device property.
This allows to use the same tools to configure and manage the
archiving system with all the supported Database back-end.
The archiving part of the HDB++ design is presented in
Fig. 1.

Figure 1: HDB++ Tango devices design.

Tools to help configuring the system, retrieving or viewing
the archive data are also available.

SUPPORTED BACK-ENDS
MySQL/MariaDB

MySQL is a well known, widely adopted SQL database
engine. After the acquisition by Oracle, in 2010, a complete
open-source fork, named MariaDB, became available.
MySQL and MariaDB are almost inter operable, even if
some differences in the supported data types and database
engines require a careful approach.

HDB++ at Elettra and FERMI The HDB++ MySQL
back-end has been in production at Elettra and FERMI
since 2015. Both accelerators share the same architecture:
two nodes, configured in high-availability, are in charge of
running all the virtual machines hosting the control system

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

WEPHA020
1116

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



servers. The deployed architecture is based on MySQL
master-slave replication. The master is used as the ingest
node, where only the production hosts are allowed to insert
data; all the historical data queries are redirected to the
replica, that is also configured to keep online historical data
older than three years. ProxySQL has been used to hide
the two databases hosting current and old data sets. The
production setup is depicted in Fig. 2.

Figure 2: MySQL master-slave replica with ProxySQL
gateway for historical data queries.

Due to the relatively small size of the archives, in FERMI
the master is currently 350 GB on disk, one virtual machine,
featuring 8 CPUs and 32 GB of RAM, can easily run the
MySQL database back-end, 4 ConfigurationManager and
48 EventSubscriber Tango devices. Figure 3 shows the total
number of attributes archived, currently ~14700, and the
number of inserts per minute, peaking up to 55K. Machine
shut-downs, where the insert rate is quite low, are clearly
visible in the time window depicted, spanning over the last
9 months; archiving errors are also highlighted.

Figure 3: Total number of attributes archived (blue) and
cumulative inserts per minute (black) for FERMI.

HDB++ at ALBA Synchrotron ALBA is a third
generation synchrotron located in Barcelona, with 8
beamlines in operation and 4 more in construction. ALBA
started deploying HDB++ Archiving System in 2016 for its

Accelerators Control System and one of its beamlines. As of
fall 2019, 11000 attributes are being archived in 6 different
MariaDB databases (a 60% of the total archived attributes)
using a total amount of 4 TB. Current databases increase at
a rate of 300GB per month, but are later decimated for long
term storage.

The approach of using multiple databases has been
adopted to reduce the size of each of the databases, thus
reducing the size of tables and indexes. It reduced the
time needed for queries and any maintenance procedure
being executed in the database. Distribution between
databases is determined by attribute subsystem, using regular
expressions. The PyTangoArchiving API [2] developed by
ALBA takes care of distributing attributes amongst databases
at setup time, and to extract and merge the data when
queried from client applications. PyTangoArchiving allows
to merge data from both HDB++ and the legacy TANGO
Archiving System, as well as other sources like ALBA
radiation monitors database or cooling system database.

All archived data is kept as it is inserted for a period
of 3 months, being later decimated to a 1 value every 10
seconds and moved to other database servers for longer term
storage. Insertion is done either by event-based subscribers
(that can hit insert-rates so high as 20 Hz per attribute) or by
periodic archiving collectors, polling periodically every 1 to
60 seconds. The usage of events or polling is determined
by the implementation of the device servers providing the
attributes.

Cassandra
Apache Cassandra [3] is an open source distributed

database management system available under the Apache
2.0 license. Cassandra’s master-less ring architecture where
all nodes play an identical role, is capable of offering
true continuous availability with no single point of failure,
fast linear scale performance and native multi data center
replication. When using the HDB++ Cassandra back-end [4],
users can take advantage of Cassandra TTL (time-to-live)
feature. If TTL is set, inserted values are automatically
removed from the database after the specified time.

The HDB++ Cassandra back-end has been used at the
ESRF during the last 4 years. The cluster grew up to
9 nodes, distributed in 2 data centers, one 6 nodes data
center dedicated to write queries and one 3 nodes data
center with SSD dedicated to read queries, with a replication
factor of 3 in the 2 data centers. Cassandra appeared to
be very reliable for writing data without downtime even
during the Cassandra upgrades. The main issue with the
HDB++ Cassandra back-end was the poor performances
when querying spectrum (array) Tango attributes data. A
query involving a spectrum attribute and returning a big
amount of data could bring down the read data center. This
is due to the fact that Cassandra is written in Java and
answering to queries involving a lot of data will trigger
the garbage collector at some point. The Cassandra node
becomes unresponsive while the garbage collector is running
and, if the garbage collector is triggered at the same time

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

Software Technology Evolution
WEPHA020

1117

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



on several nodes, the clients will get errors. This garbage
collector issue could probably be avoided by using Scylla [5],
a drop-in replacement of Apache Cassandra, written in C++,
which should be compatible with the HDB++ Cassandra
back-end. An alternative improvement could be to reduce
the partitions size for the tables containing array data, to
add more nodes on the read data center and to increase the
replication factor on the read data center to distribute the
big queries over more nodes, but this would require more
resources to maintain this bigger cluster.

PostgreSQL
PostgreSQL is a well-known open-source relational DB

that is widely used in the scientific community. Main
motivation for the development of PostgreSQL backend for
the HDB++ archiving system was the need to provide a
storage for a large quantity of waveforms that are presented
as spectrum (array) Tango attributes at the LIA-20 facility
[6]. Deploying several Cassandra nodes was found to be
impractical, and Cassandra doesn’t support 64-bit unsigned
types. MySQL storage of the array data type is very
inefficient. PostgreSQL has an efficient way of array storage,
and pguint extension was used to provide unsigned attributes
storage. To increase exchange speed a binary interface for
PostgreSQL was used.

Python and C++ libraries for data extraction were
provided. And a new utility for viewing and extracting
archived data in python based on PyQt and PyQtGraph
was developed. This utility provides a similar functionality
to HDB++ Viewer and also allows to export data in
HDF5-format. A view of the utility is shown in Fig. 4.

Figure 4: A view of the python archive viewer utility.

TimescaleDB
TimescaleDB [7] is a time series extension to PostgreSQL

available from Timescale as an open source, community and
enterprise product.

After a comparison of TimescaleDB performances
with Cassandra, the ESRF decided to use TimescaleDB

as back-end for the archiving system of the upgraded
synchroton, named EBS.

Deployment of the HDB++ TimescaleDB system at the
ESRF is loosely in three phases:

• Phase 1: Initial deployment involving building a stable
and correctly functioning HDB++ cluster.

• Phase 2: Potential optimisation and improvements to
insert/extraction pipeline.

• Phase 3: Implement long term archiving strategy.

When designing a cluster around TimescaleDB, the goal
was to build a fault tolerant, performant and scalable solution.
The design shown in Fig. 5 is based on recommendations
made by Timescale in their own evaluations [8].

Figure 5: TimescaleDB HDB++ deployment at ESRF.

This design is built around three database nodes, one
running as the Master and two Replica nodes. The cluster is
fault tolerant and failover is automatic, with Patroni handling
the failure event. On failover, the proxy is dynamically
reconfigured with the new layout of the cluster. Performance
is maximised by having the Master handle only data ingress,
with all query requests load balanced to the Replicas. It is
possible to scale the query performance by adding additional
Replica nodes in future.

Taking advantage of libpqxx (A modern C++ layer above
libpq), a new libhdbpp-timescale backend has been made
available [9]. Using libpqxx provides the opportunity to
quickly explore and test performance features in the future,
for example batch writing data to the database.

Deployment and integration into the Tango HDB++
system is an ongoing project. The TimescaleDB database
itself is rapidly evolving and adding both better performance
and additional time series features that can potentially be
integrated into the Tango HDB++ solution in future.

Elasticsearch
Elasticsearch [10] is a real-time distributed search and

analytics engine. The term “real-time” refers to the ability
to search (and sometimes create) data as soon as they are
produced; traditionally, in fact, web search crawls and
indexes web pages periodically, returning results based on
relevance to the search query. It is distributed because
its indices are divided into shards with zero or more
replicas. But the main ability is the analytics engine which

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

WEPHA020
1118

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



allows the discovery, interpretation, and communication
of meaningful patterns in data. It is based on Apache
Lucene [11], a free and open-source information retrieval
software library, therefore Elasticsearch is very good for full
text search (like for logging data or text files in general).
It is developed alongside a data-collection and log-parsing
engine called Logstash, and an analytics and visualization
platform called Kibana. The three products are designed
for use as an integrated solution, referred to as the "Elastic
Stack" (formerly the "ELK stack").

The main features of Elasticsearch are:
• no transaction: no support for transaction;
• schema flexible: there is no need to specify the schema

upfront;
• relations: denormalization [12], parent-child relations

and nested objects;
• robustness: to properly work, elasticsearch requires

that memory is abundant;
• distributed: it is a CP-system in the CAP

(Consistency-Availability-Partition tolerance) theorem
[13]

• no security: there is no support for authentication and
authorization.

Implementation An implementation of the HDB++
project on ELK has been done: the prototype had to be
able to work with REST [14] and with Json data [15]
and, for this reason, two libraries have been selected to
include these functionalities: “REST client for C++” [16]
and “Json for modern C++” [17]. More information about
the implementation can be found here [18].

BENCHMARKING TOOLS
hdbpp-metrics Github repository [19] has been created

to gather tools which can be used to help to benchmark an
HDB++ archiving system.

FIRST BENCHMARK RESULTS
MySQL vs PostgreSQL

Two tests were done at BINP for PostgreSQL vs MySQL
performance. First one was conducted using wave attribute
that is a spectrum read-only of 256 DevDouble elements and
was stored 250000 times. The second one used arr attribute
that is a spectrum read-write of 4096 DevULong elements
and was stored 5000 times. The results including write times
and table size are summarized in Table 1. These benchmarks
show that PostgreSQL significantly improves the memory
and speed efficiency of the storage of array data types.

TimescaleDB vs MySQL vs PostgreSQL
Preliminary tests have been run to compare the

performance of the different supported back-ends on the
same hardware. The relevant system and application
software versions used are: Ubuntu 16.04.3 LTS, MySQL
5.7.18, PostgreSQL 11.3 and TimescaleDB 1.3.0. A dump of
the actual FERMI historical database has been done, taking

Table 1: A Comparison of PostgreSQL vs MySQL
Waveform and Arr Storage. Times are in `s, table size
is in Mbyte

Attribute Min Average Max Size
MySQL wave 2551 4669 253042 4440
PostgreSQL wave 243 358 23087 768
MySQL arr 50718 61145 198584 5511
PostgreSQL arr 1641 2082 14173 251

care of addressing the differences in the database schema
used by the different back-ends, focusing on the largest table,
which currently counts more than 4 billion rows. pt-fifo-split
has been used to split the table into chunks before loading
into PostgreSQL; loading the 4 billion row table took ~30
hours using the standard SQL COPY and ~20 hours with
the timescaledb-parallel-copy command, at the expense of
increasing disk usage by ~5%.

A typical query, extracting a time series for a Tango double
scalar attribute, spanning over two different time windows,
has been run for the different back-ends. The first time
window results in ~1 M rows query, the second in ~10 M
rows. Moreover, the time necessary to execute the queries
has been measured in two conditions: after a database cold
restart, guaranteeing all the caches are flushed, and just after
the first query. For TimescaleDB the measurements have
also been taken before and after the CLUSTER command.
Results are presented in Table 2.

Table 2: HDB++ Supported Database Engine Query
Benchmark

Engine Cache 1 M 10 M

MySQL (InnoDB) Cold 2.3 s 22.7 s
Hot 2.0 s 21.0 s

TimescaleDB Cold 5.3 s 36.5 s
Hot 1.2 s 12.2 s

TimescaleDB+CLUSTER Cold 1.9 s 15.0 s
Hot 1.2 s 11.9 s

PostgreSQL Cold 1.8 s 15.9 s
Hot 1.2 s 12.6 s

It is worth noting the good performance numbers of
plain PostgreSQL with respect to TimescaleDB. Likely, the
explanation can be found in the simple queries used for
this benchmark, that, anyhow, resemble most of the queries
run. An effective advantage using TimescaleDB should arise
whenever complex queries are made.

TimescaleDB vs Cassandra Evaluation
Here the community edition is evaluated as a replacement

for Cassandra in the ESRF HDB++ archiving system.

Test Setup Tests were run on a production grade
borrowed Cassandra server, with 32 Cores, 128GB RAM

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

Software Technology Evolution
WEPHA020

1119

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



and a RAID 0 SSD array. TimescaleDB was tuned using
the parameters offered from the online tuning tool PGTune.
1 year of data was extracted from the live ESRF Cassandra
cluster. For the best performance, data was ingested in time
order, thus all test data files were sorted into time order for
bulk loading. Achieving the best extraction performance
means the data tables have to be clustered on a composite
attribute id + data time index for the HDB++ schema. Finally,
the TimescaleDB hyper table chunk sizes tested were all
below 7 days. All results presented are “cold”, i.e. not using
database cache capabilities to improve performance.

Insert Performance TimescaleDB is built with very
high insert performance as a feature [20]. Testing was with a
Timescale provided bulk loading tool. Insert rates achieved
were above 440,000 rows per second for a scalar double, and
45,000 rows per second for an array double.

Query performance Testing with a simple query to
extract data between two time points for a scalar archived
once per second, the results show a remarkable improvement.
The improvement is over 1000% against Cassandra for each
time period as shown in Table 3.

Table 3: TimescaleDB vs. Cassandra Scalar Attribute Query
Benchmark

Query Rows return Timescale Cassandra

1 Hour 3 298 8 ms 111 ms

1 Day 84 238 127 ms ~2.6 s

1 Week 505 858 748 ms ~11.9 s

1 Month 2 498 762 ~3.8 s ~1 min

3 Months 7 204 234 ~10 s ~2 min 37 s

12 Months 28 699 357 ~43 s ~10 min

Choosing an extreme scenario (an array attribute archived
multiple times per second) with the same simple query, select
data between two time points, the results shown in Table 4
are again extremely good.

Table 4: TimescaleDB Arrays Query Benchmark

Query Rows return Data Size Timescale

1 Hour 3 298 ~3.7 MB 693 ms

1 Day 84 238 ~90 MB ~15.6 s

1 Week 505 858 ~633 MB ~114 s

1 Month 2 498 762 ~2.62 GB ~8 min

3 Months 7 204 234 ~7.38 GB ~30 min

12 Months 28 699 357 ~17.77 GB ~63 min

The worst case 12 months query completed in just over 60
minutes, pulling over 17GB of data from over 28 millions

rows. It should be noted Cassandra could not complete a
query greater than a day for this attribute archive at high rate.
As can be seen from the results above, querying large chunks
of attribute array data is expensive. PostgreSQL provides an
additional tool, the ability to query individual elements of an
array. While this is around 80% slower than an equivalent
simple scalar query, it is consistently 1500% quicker than
requesting the full array.

Benchmark Conclusion TimescaleDB offers a
significant performance boost over Cassandra under the
evaluated conditions. The bulk of the data requested by
ESRF users is currently time period based, but TimescaleDB
provides support for significant gains with more complex
queries, opening up new possibilities for the retrieval and
visualisation of data in the future.

CONCLUSION
HDB++, thanks to its design, allows to store data into

different DB backends. This encourages contributions
in the HDB++ community and 5 backends are already
supported. As presented in this paper, the new PostgreSQL
and TimescaleDB backends improve the user experience
when dealing with Tango spectrum (array) attributes. The
Cassandra back-end is currently a good fit for use cases
where high availability is required for writing the archiving
data and where scalar attributes data has to be stored. It is
not a good fit for retrieving big chunks of data, in particular
for getting multi-dimensional data. The MySQL/MariaDB
backend is deployed in several institutes. Some deployment
ideas for this backend have been presented in this paper.
The Elasticsearch backend is a good fit for users interested
in benefiting from the advantages of the ELK stack. The
HDB++ project is supported by an active community.
The latest face-to-face collaboration meeting took place in
Grenoble from 18th to 20th September 2019 [21].

ACKNOWLEDGEMENTS
The authors would like to thank the Tango-Controls

HDB++ community members for their contribution and
great ideas.

REFERENCES
[1] L. Pivetta et al., “HDB++: a new archiving system for

TANGO”, in Proc. ICALEPCS’15, Melbourne, Australia,
Oct. 2015, paper WED3O04, pp. 652–655.

[2] PyTangoArchiving, https://github.com/tango-
controls/PyTangoArchiving

[3] Apache Cassandra, https://cassandra.apache.org/

[4] R. Bourtembourg et al., “How Cassandra improves
performances and availability of HDB++ TANGO archiving
system”, in Proc. ICALEPCS’15, Melbourne, Australia, Oct.
2015, paper WEM310, pp. 686–688.

[5] Scylla, https://www.scylladb.com/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

WEPHA020
1120

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



[6] G. A. Fatkin et al., “LIA-20 Control System Project”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017, pp. 1485–1488.
doi:10.18429/JACoW-ICALEPCS2017-THPHA052

[7] TimescaleDB Github repository, https://github.com/
timescale/timescaledb

[8] Evaluating high availability solutions for TimescaleDB
+ PostgreSQL, https://blog.timescale.com/blog/
high-availability-timescaledb-postgresql-
patroni-a4572264a831/

[9] libhdbpp-timescale Github repository, https://github.
com/tango-controls-hdbpp/libhdbpp-timescale

[10] Elasticsearch, https://www.elastic.co/
[11] Apache Lucene, https://lucene.apache.org/
[12] Denormalization, http://en.wikipedia.org/wiki/

Denormalization

[13] CAP theorem, http://en.wikipedia.org/wiki/CAP_
theorem

[14] REST,
http://en.wikipedia.org/wiki/
Representational_state_transfer

[15] JSON, http://www.json.org

[16] REST client for C++, https://github.com/mrtazz/
restclient-cpp

[17] JSON for Modern C++, https://github.com/nlohmann/
json

[18] M. Di Carlo et al., "HDB@ELK: another noSql customization
for the HDB++ archiving system", in Proc. SPIE 10707,
Software and Cyberinfrastructure for Astronomy V, Austin,
USA, Jul. 2018. doi:10.1117/12.2312464

[19] hdbpp-metrics, https://github.com/tango-controls-
hdbpp/hdbpp-metrics/

[20] TimescaleDB vs. PostgreSQL for time-series,
https://blog.timescale.com/blog/timescaledb-
vs-6a696248104e/

[21] HDB++ September 2019 Meeting Minutes,
https://github.com/tango-controls-hdbpp/
meeting-minutes/blob/master/2019-09/Minutes.
md

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA020

Software Technology Evolution
WEPHA020

1121

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


