
STATE OF THE TANGO CONTROLS KERNEL DEVELOPMENT IN 2019
A. Götz, R. Bourtembourg, J-M.Chaize, P.Verdier, ESRF, Grenoble, France

T. Coutinho, J. Moldes, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
L. Pivetta, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy

I. Khokhriakov, O. Merkulova, IK company, Moscow, Russia
S. Gara, NEXEYA Systems, La Couronne, France

P. P. Goryl, M. Liszcz, S2Innovation, Kraków, Poland
A. F. Joubert, SARAO, Cape Town, South Africa

G. Abeille, SOLEIL, Gif-sur-Yvette, France
G. Mant, STFC, Daresbury, Warrington, Cheshire, United Kingdom

T. Braun, Byte Physics, Berlin, Germany
V. Hardion, MAXIV Sweden, Lund, Sweden

M. Bartolini, SKA Organisation, Macclesfield, United Kingdom

Abstract
This paper will present the state of of kernel developments

in the Tango Controls toolkit and community since the
previous ICALEPCS 2017. It will describe what changes
have been made over the last 2 years to the Long Term
Support (LTS) version, how GitHub has been used to provide
Continuous Integration (CI) for all platforms, and prepare
the latest source code release. It will present how docker
containers are supported, how they are being used for CI and
for building digital twins. It will describe the outcome of
the kernel code camp(s). Finally it will present how Tango
is preparing the next version - V10. The paper will explain
why new and old installations can continue profiting from
Tango Controls while maintaining their investment. In other
words in Tango "the more things change the better the core
concepts become".

INTRODUCTION
Tango Controls is a software toolkit for building object

oriented control systems. It has been adopted at a large
number of sites around the world either as the main toolkit
for their control system or for a sub-system or commercially
acquired systems. A growing number of commercial
products and control systems are now based on Tango
Controls. A few commercial companies offer paying support
for anyone needing help in integrating Tango Controls into
their system.

With this wide user base it is important that Tango
Controls continues to remain an active project and offer
a clear roadmap for the future. Tango Controls has regularly
given an update at the ICALEPCS series of conferences of
the state of the kernel development. This paper follows in
this tradition. It will provide an update of what has been
achieved over the last two years as well as provide a summary
of what is planned next. Readers are encouraged to refer to
following papers about kernel development presented at this
conference for more details on specific topics: MOPHA051,
MOPHA050, WEPHA020, WEPHA056, WESH3003, and
other papers on using Tango.

The main objectives of kernel developments for Tango
Controls since 2017 has been to continue consolidating the
continuous integration for all major platforms, maintain
the Long Term Support version V9, i.e., bug fixing and
add features which are strongly needed by the community
and do not break compatibility with the, improve the web
development platform, continue improve the documentation
and maintain the website. This paper summarises these
developments.

COLLABORATION
The Tango Controls collaboration is composed of

several partners sites who have committed -by signing a
Collaboration Contract- to financing the development and
the animation of the community. The Tango Controls
collaboration is growing year after year. In 2017, the largest
astronomical project in the world, the Square Kilometre
Array (SKA), joined the collaboration with 2 members: SKA
Organisation (Manchester, United Kingdom) and SARAO
(Cape Town, South Africa). In 2019, the Extreme Light
Infrastructure (ELI) institute in Czech Republic joined the
collaboration, to make up 11 partners financing the core
development. Each partner nominates a representative on
the steering committee to vote and follow-up the budget,
define the strategy and the milestones.

The ESRF hosts the collaboration body and is in
charge of executing the development program voted by
the steering committee. The collaboration budget allowed
the collaboration to boost the software development,
maintenance and animation effort by sub-contracting certain
tasks to commercial companies.

KERNEL DEVELOPMENT
C++ Core Library

The stable (Long-Term Support) branch of the Tango
C++ Kernel is steadily evolving. The development has
accelerated since the move from Sourceforge to GitHub [1]
and integration of various services like Travis for continuous

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

WEPHA058
1234

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



integration and Sonar for code quality. The open nature
of GitHub encourages collaboration within the Tango
Community.

Recently a new version, cppTango 9.3.3, has been
released [2]. It is the first stable release since 9.2.5 in 2017
and the move to GitHub. It contains numerous improvements
over the previous major 9.2.5 release, like performance
optimizations for devices with a large number of attributes
or possibility to configure float or double properties to a
NaN (not a number) or infinite value. A big work has
been done on the event system to make it more reliable and
avoid heartbeat errors when Tango is used with some special
network configurations, and to work around a bug in some
ZMQ versions which was preventing the event subscribers
from receiving more than 1000 events. The latest release
provides better compatibility with modern versions of GCC
and Clang when compiling the source code in C++14 mode.
This is especially important for device server developers as
they can use up-to-date compiler tool-chains for their work.
The test suite has been refactored into smaller, isolated test
cases. Additionally, the new Tango C++ Kernel release
contains many small changes, bug fixes and code quality
improvements.

The API documentation has been updated to support the
search feature. There is ongoing work that aims to migrate
the documentation from Doxygen to Sphinx [3].

Python Core Library
Python has become the most popular programming

language in the Tango Controls community in recent years.
This is largely due to the excellent PyTango binding for
Tango to C++. It provides a high level python friendly API
which makes developing servers and clients extremely easy.

PyTango 9.3.1 has been released in August 2019 [4].
This marks the fifth release since the previous review at
ICALEPCS 2017 [1]. Eight contributors have been working
to the project producing more than 400 commits, in total.
PyTango 9.3.1 supports the releases 9.3.x of the Tango
C++ library - the minor versions are kept in sync. No
major updates were required in this period, so it was largely
maintenance.

The PyTango library is compatible with both Python
2 and 3. As the end-of-life for Python 2 approaches
(1 January 2020) [5], other Tango projects using PyTango are
transitioning to Python 3. This brought to light some issues
with the Python 3 compatibility, which have largely been
addressed. Some improvements were made to the asyncio [6]
"green mode" support as well.

A notable addition is that pre-compiled packages for
Microsoft Windows are now available directly from the
Python Package Index, PyPI [7]. These are built for
various CPU architectures and Python versions using the
AppVeyor [8] continuous integration tool. Note that the C++
Tango library bindings are statically linked - currently using
version 9.3.3.

There is ongoing work to make the high level application
programming interface (API) more comfortable for Python

users, i.e., more "Pythonic". Work on the Tango DevEnum
data type has already been completed which maps it to a
standard Python enumerated type. An area for future work is
logging - the standard Python logger should be available in
all device servers. Log handlers could then be configured for
various targets, such the Tango Logging Service, syslog [9],
or Elasticsearch [10].

The major rework of changing the C++ binding to use
pybind11 is still ongoing, and discussed in a later section.

Java Core Library
As for the C++ and Python libraries, the Java library is

continuously maintained. Last changes were mainly focused
on bug fixing and continuous integration tooling. We have
setup automated releases and from now on, on each git
tag, Travis will automatically compile, test and deploy the
JTango binaries into Bintray [11]. These binaries are also
available in the Maven Central repository [12]. JTango is
still compiled with Java 7 to maintain compatibility with
current users, and we will move to Java 8 by the end of 2019.
From Java 11, its default CORBA implementation has been
removed from Java [13], but it not an issue as it is still
available in Jacorb [14], that is already used by JTango.

PYBIND11 PORT
The current version of PyTango (9.3.1) utilises Boost

as the binding layer between Python and C++. It exposes
the Tango C++ API to Python and vice-versa. A project
is underway to replace this layer with pybind11 [15].
This will have the advantage of a lightweight header-only
implementation utilising the modern feature of C++11 and
beyond. It will lead to faster compilation times and a
smaller overall footprint. At the same time, much of the
code can be simplified taking advantage of pybind’s in-built
features: automatic type conversion, STL containers, smart
pointers, internal reference counting, numpy, and buffer
support, to name a few. Support for overloaded functions
and inheritance of virtual and pure virtual is also essential
and simplified.

A simple example of our conversion to pybind11 shows
a single method of a python client calling C++ to report its
name. The key features here are the use of a C++ lambda
function whereby the calling arguments and return type are
clearly defined.

.def("name",[](Tango::DeviceProxy& self)->std::string {
return self.name(); // Tango C++ signature

})

Most of the client code has now been ported and the
server side is well under way. Conversion has not always
been straight forward with the main stumbling blocks being
threading issues in the server side code and asynchronous
command callbacks, however, release for preliminary testing
is foreseen to be the end of the year. For further information
see pybind11 documentation on readthedocs [16].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

Software Technology Evolution
WEPHA058

1235

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



REST API
The Tango REST API is an important addition to support

web interfaces "out-of-the-box" (Fig. 1). Some major
improvements were made to the Tango REST API. The
project was restructured to separate specification from
reference implementation and tests suite. The new 1.1
version of Tango REST API specification was released as
well as its Java implementation in November 2018. This
version features adoption of HTTP/2.0 and Subscriptions
API which allows clients to subscribe to upstream native
Tango events and to be notified via event stream [17].
In conjunction with SSE, HTTP/2.0 forms a powerful
bi-directional communication protocol from HTTP based
clients to Tango Controls applications and vice versa.

Figure 1: Tango REST API events with SSE

WEB TOOLKIT
A new web technology project enters the Tango portfolio.

WebJive is a web-based application for visualising and
interacting with a Tango control system. This is an attempt to
recreate a basic device browser with modern web technology,
similar to the desktop application Jive. The development is
based on the REACT framework for the User Interface and
GraphQL for the communication with Tango (Fig. 2). React
is a JavaScript framework which is component oriented.
This framework made by Facebook is very popular among
frond-end web developers. The backend server so call
TangoGQL provides a GraphQL API which is a declarative
language for querying data. Returning only the data you
ask for can drastically reduce the number of calls needed
for getting the information. Furthermore the Tango event
system has been connected to the GraphQL event-based
subscriptions, making use of a unique and standard protocol.
Additionally the server can be connected to a Central
Authorisation System to limit the access in reading/writing
attributes and executing commands.

A user interface construction tool has been developed
based on the same architecture. The user can create their own
dashboards online and share them. It comes with an array of
basic built-in widgets, such as buttons that issue commands
and plot diagrams that display attribute values over time.
Furthermore, its architecture makes it straightforward for
a developer to extend it with new widgets. The aim of the
tool is to empower anybody who works with a Tango control
system by enabling them to create advanced GUIs in a matter
of minutes without any programming.

Figure 2: TangoGQL a GraphQL backend for Tango

WebJive is developed by MAX IV Laboratory and the
Square Kilometer Array (SKA.). A Tango slack channel
"#webjive" has been opened to facilitate the collaboration
for the development.

WALTZ
During the 32nd Tango Collaboration meeting, the Tango

community voted to rename TangoWebapp: it is now known
as Waltz. Since 2017 Waltz reached a mature state as an end
user application and as a platform for Tango web applications.
Being used in production at DESY for about one year, it
proved to be a first choice tool for beamline commissioning at
PETRA P05 + P07. The latest release includes a wide range
of useful widgets, that simplify monitoring and controlling,
as well as managing, Tango devices: multiple dashboard
profiles for control and monitoring, Tango hosts and servers
manager, redesigned Tango device control panel, etc. [18].
As a platform, Waltz offers rich possibilities to develop
user oriented widgets. At PETRA P05 and P07 it is used
to configure the data acquisition layer. A comprehensive
description on Waltz as a platform can be found in [19].

WEB SITE
Since December 2017 a new Tango Controls website has

been online. All information of the previous website was
analyzed, redesigned and restructured. This was done to
make visitors feel more comfortable and navigate through
the website faster. This reorganization was accompanied
with a huge Tango Controls documentation reorganization
and all information dedicated to the documentation was
moved there from the website. New sections were added.
Among them are GitHub info and a mind-map with all of
the Tango Controls Ecosystem, see Fig. 3.

TANGO V10
The main quality attributes of the architecture of the

current Tango version were highlighted in Tango V10
design document [20]; moreover, a wide-ranging analysis
of the existing Tango Controls code base was done, to
define a possible evolution strategy for Tango V10, and
included in the report. A dedicated meeting was organized
to discuss the outcome of the analysis. As the result of

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

WEPHA058
1236

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 3: Tango Controls Ecosystem Mind Map

the discussion it was decided to continue the analysis and
to involve more community members starting the Tango
RFC project [21]. Inspired by the ZeroMQ project, the
Tango community decided to adopt the Collective Code
Construction Contract (C4) [22] to create and modify RFCs.
In addition, RFC life-cycle has been defined to adhere to the
Consensus-Oriented Specification System (COSS).

The Tango RFC project formally specifies the Tango
Controls protocol as it is now (v9.3.3). It will be a
base for the specification of Tango V10. The Tango V10
will probably not use CORBA transport communication.
However, the main qualities and features of the Tango
Controls will be preserved. It is planned that from the user
perspective, the only change will be long term sustainability
and better performance. For this purpose, the protocol
specification is building separate RFC documents. Some of
the RFC documents specify certain protocol features and
actors behaviour, and some of the RFCs specify current
transport implementation based on CORBA/Omniorb and
ZeroMQ.

The specification builds up layers, which allows for a next
step. The next step is to select specific features of the current
Tango Controls protocol and propose its implementation
with a new transport protocol by developing client and server
prototypes.

CONTINUOUS INTEGRATION
The Tango kernel projects use Travis [23] for continuous

integration builds for Linux platforms. Travis is currently set
up to compile and test cppTango on Debian Wheezy, Jessie,
Stretch and Buster. PyTango is built and tested by Travis
for python 2.7, 3.5, 3.6 and 3.7. cppTango development
Debian packages are generated and deployed automatically
on Bintray [24] when a new tag is created. Travis is used
by JTango to automatically deploy new releases to Bintray
and to create automatically a Github release with a fat jar as
asset when a new git tag is created. Appveyor [8] is used to

automatically build the Tango C++ library and the PyTango
dependencies for different Windows compilers: currently
from MSVC9 to MSVC15 in 32 and 64 bits, but MSVC14
and more recent compilers in 32 and 64 bits in the next
cppTango versions. Appveyor decided to change its artifacts
retention policy so build artifacts older than 6 months are
now automatically deleted. To overcome this limitation, the
artifacts are now saved as Github releases assets. Appveyor
builds depending on artifacts from other repositories are
now downloading these files from the Github release assets.

CONTAINERS
Although nowadays there are many technologies and

standards for containerising applications, Docker is the
Tango Community’s container of choice. Following the
release of the first official Docker image with Tango and
using it for the Tango Kernel continuous integration, Docker
is gaining more and more adoption in the Tango Community.
The Tango image has been updated to match the latest Tango
Controls version and is now built directly from the Tango
Controls source code, as opposed to being installed from a
Debian binary package. There is ongoing work that aims to
further modularise and refactor existing Tango images [25].

The Docker is also extensively used by the TangoBox
virtual machine. Starting with TangoBox 9.2 release, more
and more services were moved into dedicated containers.
The TangoBox virtual machine image is now available on
AWS [26] making it even easier to try out Tango Controls
and many of the tools developed for Tango.

In version 9.3 of TangoBox, the following applications
and services are running in their own containers: Archiving
(HDB, HDB++, E-giga), Waltz, JLinac and Modbus
simulators, JupyTango. The images with these services
are automatically built in GitLab CI and published to a
container registry. This allows for better manageability
and software reusability and eases upgrades of the VM’s
base system. There are plans to move even more services,
including Tango’s Database device server, into containers.
The goal is to have a fully dockerised Tango Controls.

Docker has proven itself to be very useful for development
purposes and automated testing of device servers in CI. It
allows developers to easily test software against multiple
versions of Tango Controls to ensure portability and
compatibility. This is especially important for companies
like S2Innovation, who develop software for the industry.
Often they are required to ensure compatibility with older
Tango releases while and at the same time they want to be
able to run the software also on the latest versions of Tango.

SKA Use Case
The SKA Project is investing in the implementation of

a software development strategy based on the principles
of Continuous Delivery and DevOps practices. Containers
and container orchestration engines have been identified
as fundamental building blocks in the realisation of an
efficient development strategy and pipeline. This helps in

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

Software Technology Evolution
WEPHA058

1237

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



ensuring consistency and continuity between the different
environments, starting from the local development machines
up to the integration, staging and production environments.
Moreover, as the SKA telescopes are being built, there is
a need for a completely virtualized integration and testing
infrastructure for the various software components being
developed. A virtual integration facility is a precious asset
for the project and it will enable software development and
maintenance even in the absence of the telescope. In this
context the necessity to deploy a complete Tango based
control system in a containerised environment emerged. As a
first step in this direction, the SKA Organisation has defined
a set of standards to be adopted when approaching container
related technologies. To avoid vendor lock-in and leverage
Open Container Initiative (OCI) compliant containers, a
set of standards, conventions and guidelines for building,
integrating and maintaining container technologies has been
published [27]. In adherence with the guidelines a set of
container images have been defined, based on the Docker
technology, but in compliance with the OCI standards [28]:

• tango-dependencies: a base image containing Tango
preferred version of ZeroMQ plus the preferred,
patched version of OmniORB

• tango-db: a MariaDB image including Tango database
schema. Data is stored separately in a volume

• tango-cpp: core C++ Tango libraries and applications

• tango-pogo: image for running Pogo and displaying
Pogo help. Pogo output can be persisted to a docker
volume or to the host machine

• tango-java: as per tango-cpp, plus Java applications
and bindings

• tango-python: extends tango-cpp, adding PyTango
Python bindings

• tango-itango: itango, a Python shell for interactive
TANGO sessions

• tango-rest: an image containing tango-rest, which acts
as a REST proxy to a Tango system

• tango-dsconfig: an image containing the dsconfig tool
and related dependencies

These images can be orchestrated and used as the basis
for developing a complete Tango based control system. The
SKA Organisation has defined a set of guidelines [29] that
can be followed so to orchestrate containers based on Cloud
Native Computing Foundation practices and tools. At the
time of this writing a first SKA integration environment is
defined and deployed accordingly to those standards using
Helm charts into a Kubernetes based environment.

Further investigation is needed in order to understand
the trade-offs of container adoption, there are general
expectations that these aspects will evolve rapidly during

the early stages of SKA construction. Optimising the local
development environment for developers and easing the
development experience is one of the main aspects. Also,
some investigation is in progress in order to understand the
performance aspects of a container based Tango architecture:
how to best map PODs, containers, device servers and
devices is still unclear and scalability tests will be executed
in the next future to better explore this space.

CONCLUSION
The Tango Controls Collaboration has again proved

to essential in ensuring the continued maintenance and
development of the Tango kernel over the last two years.
The quality of the Long Term Support Tango kernel libraries
has improved thanks to new kernel developers with strong
C++, Python and Java skills joining the core development
team. An ambitious project to capture the functionality of
the LTS version in RFCs has been started. Developments in
the area of web technologies are very active and continue
to improve. Documentation has been improved thanks to
the organisation of a Write-the-Doc camp. Continuous
Integration has finally been addressed for all major platforms
on Linux and Windows so that now the main libraries and
bindings are available for both platforms. The adoption of
Docker for testing is being generalised. New members in
the community are playing an important role in maintaining
the level of community activity high. Tango meetings and
code camps remain an essential part of the community
activity. The contribution of commercial companies has
been essential in all the kernel activities. Without them
Tango would not have advanced to the current level of
stability and support.

ACKNOWLEDGEMENTS
The authors acknowledge the support of the Tango

Controls Collaboration for funding a number of the
developments described here as well as the Tango Controls
Community for bug reports, fixes, suggestions for new
features and contributions.

REFERENCES
[1] R. Bourtembourg et al., “TANGO Kernel Development

Status”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct. 2017, pp. 27–33. doi:10.18429/
JACoW-ICALEPCS2017-MOBPL02

[2] https://github.com/tango-controls/cppTango/
releases/tag/9.3.3

[3] https://github.com/tango-controls/cppTango/
issues/365

[4] https://github.com/tango-controls/pytango/
releases/tag/v9.3.1

[5] https://www.python.org/dev/peps/pep-0373

[6] https://docs.python.org/3/library/asyncio.
html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

WEPHA058
1238

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



[7] https://pypi.org
[8] https://www.appveyor.com
[9] https://en.wikipedia.org/wiki/Syslog

[10] https://www.elastic.co/products/elastic-stack
[11] https://bintray.com/tango-controls/jtango
[12] https://repo.maven.apache.org/maven2/org/

tango-controls/JTangoServer

[13] https://openjdk.java.net/jeps/320
[14] https://www.jacorb.org
[15] https://github.com/pybind/pybind11
[16] https://pybind11.readthedocs.io/en/stable/

basics.html

[17] I. Khokhriakov, Exporting Tango Controls events to HTTP
using SSE, 33rd Tango Collaboration Meeting, 2019, DESY,
Hamburg, Germany.

[18] github.com/tango-controls/waltz/releases/
v0.7.3

[19] I. Khokhriakov et al., “Waltz – a platform for Tango
Controls web applications”, presented at the 17th Int. Conf.
on Accelerator and Large Experimental Control Systems

(ICALEPCS’19), New York, NY, USA, Oct. 2019, paper
WESH3003.

[20] https://github.com/tango-controls/
tango-v10-design-doc

[21] https://github.com/tango-controls/rfc

[22] https://github.com/unprotocols/rfc

[23] https://travis-ci.org

[24] https://bintray.com/tango-controls/debian/
cppTango

[25] https://github.com/tango-controls/
tango-cs-docker/pull/9

[26] https://tango-controls.readthedocs.io/en/
latest/installation/amazon-cloud.html#
tangobox-9-3-ami

[27] http://developer.skatelescope.org/en/latest/
development/containerisation-standards.html

[28] https://gitlab.com/ska-telescope/ska-docker

[29] http://developer.skatelescope.org/en/latest/
development/orchestration-guidelines.html

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA058

Software Technology Evolution
WEPHA058

1239

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


