
A VIRTUALIZED BEAMLINE CONTROL AND
DAQ ENVIRONMENT AT PAL

S. W. Kim∗, H. J. Choi, H. S. Kim, and W. W. Lee†

Pohang Accelerator Laboratory, Pohang, South Korea

Abstract
At least three different computers are used in the beam-

lines of PAL, first for EPICS IOC, second for device control
and data acquisition(DAQ), and third for analyzing data for
users. In the meantime, stable beamline control was pos-
sible by maintaining the policy of separating applications
listed above from the hardware layer. As data volumes grow
and the resulting data throughput increases, demands for
replacement of highly efficient computers has increased.
Advances in virtualization technology and robust computer
performance have enabled a policy shift from hardware-level
isolation to software-level isolation without replacing all the
computers. DAQ and analysis software using the Bluesky
Data Collection Framework have been implemented on this
virtualized OS. In this presentation, we introduce the DAQ
system implemented by this virtualization method.

VIRTUALIZATION
As the paradigm shifts from single-core to multi-core

programming, interest in virtualization is increasing. The
beamline control software were categorized into three major
parts, IOC / DAQ / Analysis, and has been run on different
computers. However, as multi-core processors become com-
mon, the traditional approach is inefficient in terms of not
using idle computing resources. By dividing the system re-
sources through virtualization, it can allocate dynamically to
the environment with high resource utilization and save time
for installation and programming environment construction.
Unlike server virtualization, a workstation requires termi-
nals such as monitors, keyboard, and mouse to control each
virtual machine. Allocating physical hardware to a virtual
machine is called passthrough. The types of hypervisors
will be discussed in the following session.

Virtualization Solutions
Virtualization solutions can be classified into three major

types depending on the hypervisors: KVM, Xen, and ESXi
(See Table 1). Kernel based Virtual Machine (KVM) con-
verts the Linux kernel into a hypervisor, and takes advantage
of Linux’s process and memory management, network, I/O,
and driver features. KVM has been integrated into the ker-
nel since Linux version 2.6.20 and can be used immediately
without rebuilding the kernel. Xen, like KVM, turns the
Linux kernel into a hypervisor and can also take advantage
of the Linux kernel, but requires a new build of the kernel
with the Xen module loaded. KVM and Xen are both open-
source and available for free on most Linux distributions
∗ physwkim@postech.ac.kr
† lww@postech.ac.kr

and BSDs. Libvirt can manage virtual machines running on
top of these hypervisors, and can be easily managed with
Virt-manager, a GUI interface that utilizes it. ESXi is a hy-
pervisor provided by VMware. The Free version has some
limitations, including up to two physical CPUs, a maximum
of eight vCPUs per virtual machine (VM), and other API
limitations. The hypervisors listed above enable operating
system virtualization and passthrough for free.

Table 1: Virtualization Solutions for GPU Passthrough

Solutions Hypervisor Pricing

Linux/kvm KVM Free
PROXMOX KVM, LXC Free
Linux/Xen Xen Free
XCP-ng Xen Free
Citrix XenServer Xen $763.00 / CPU
VMware ESXi Free (w/ limit)

Based on these hypervisors, there are commercial solu-
tions that provide virtual machine, network and storage man-
agement tools, and commercial support. Some examples are
VMware vSphere (ESXi), Citrix XenServer (Xen), XCP-ng
(Xen), and PROXMOX (KVM). Citrix XenServer has re-
moved the GPU passthrough feature from the community
edition since version 7.3, but it is still available for free in its
open source version, XCP-ng. XCP-ng and PROXMOX are
free to use all features without any limitations, but security
updates and support are available with commercial annual
subscription.

Virtual machine orchestration is required to remotely man-
age and monitor hypervisors installed in various beamlines
without having to log in directly. For most cases, it is suffi-
cient to connect to the hypervisor with SSH and manage the
VMs via Libvirt and Virt-manager. A virtualized worksta-
tion using CentOS 7 / KVM as a hypervisor will be intro-
duced in the following section. For reference, Orchestration
solutions include oVirt (KVM), XOA (Xen), and vCenter
Server (ESXi).

Virtual Machines on a Workstation
The workstation’s resources consisted of 32 logical CPUs,

32 GB of RAM, two graphics card, a PCIe to USB hub, and
hard disks have been allocated to the virtual machines. The
procedures of setting up CentOS 7 as a hypervisor and GPU
passthrough are summarized separately [1]. CentOS 6 (IOC
VM), CentOS 7 (DAQ VM), and Windows 7 (Analysis VM)
operating systems were installed, respectively, and eight vC-
PUs and 8 GB of RAM were allocated. And the remaining
resources were assigned to the hypervisor. Since the IOC

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA078

Experiment Control
WEPHA078

1273

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: Multiple operating systems are running on one
workstation. Headless: IOC VM (CentOS 6), Left: DAQ
VM (CentOS 7), Middle: Analysis VM (Windows 7), Right:
Workstation.

VM does not require a terminal, it operates in headless mode
and allocates Quadro P400 (Primary) and Radeon Wx2100
(Secondary) GPUs to the DAQ VM and Analysis VM, re-
spectively. With PCIe to usb card assigned to the virtual
machine, USB devices can be easily added or removed. Fig-
ure 1 shows the DAQ VM and Analysis VM running on a
virtualized workstation.

DATA COLLECTION FRAMEWORK
Commercial software development tools, such as Lab-

view, Matlab, IDL etc, provide qualified functions, graph
libraries, and GUI toolkits as an integrated development
environment. Because of these advantages in terms of effi-
ciency and productivity in scientific programming, DAQ and
analysis programs have been developed widely using those
environments. However since the development environment
was not unified, inefficiencies such as code recycling were
greatly increased. When a developed scan algorithm is ap-
plied to other beamlines, it has to be completely rewritten for
the specific environment. For this reason, the Bluesky [2–5]
was chosen as the data collection framework for integrating
different DAQ environments.

The Bluesky Data Collection Framework
The benefits of choosing a bluesky framework can be

listed as follows [2]:
• Ophyd [4] abstracts different hardwares so that these

devices can be used in the same way.
• Most of the motors and detectors used in the beamline

are included.
• Common scan algorithms using abstracted hardware

are predefined.
• Databroker [5] support various backends for storing

data and rich metadata.
• Scientific libraries developed in python such as numpy

and scipy can easily be used within the bluesky frame-
work.

By using bluesky, common hardware / scans are prede-
fined so that efficiency can be greatly improved by only
considering additional features or customizations. In addi-

tion, rich metadata can be stored and utilized, which greatly
helps program development and user data analysis.

EXAFS with the Bluesky Framework
The beamline 1D at PLS-II has been dedicated to XRD

(Hard X-ray Diffraction) and EXAFS (Extended X-ray Ab-
sorption Fine Structure) experiment and successfully sup-
ported the user community with commercial tools, SPEC
(XRD) and Labview (EXAFS). The EXAFS measurement
software, previously developed in Labview, was rewritten
with utilizing the bluesky data collection framework. The
EXAFS program was created with reference to the structure
of DAQ software of ISS Beamline at NSLS-II [6].

Figure 2: EXAFS data-acquisition software built with the
Bluesky Framework [2–6] and the silx [7] plotting library.

The program consists of a three threads, the main thread,
the plot thread, and the asyncio thread of the bluesky. The
plot thread periodically receives data from the databroker,
performs the necessary operations, and draw them on the
graph. The bluesky’s RunEngine runs on a asyncio thread,
performs predefined scan procedures (plan), and sends data
to the databroker. The backend of the databroker is mongodb.
Normally it works fine with sqlite backend, but mongodb
seems to be a better choice if there is a lot of data throughput,
such as fly scan.

The silx [7] library was used for the data plot. PyMca’s [8]
enormous graph and GUI-related codes have been separated
into the silx library for use in beamline data analysis pro-
grams. The PyMca program currently also uses the silx
library. The 1D, 2D, 3D and HDF5 data viewers are pro-
vided so silx can be very useful for writing DAQ and analysis
programs. In addition, the silx’s submitToQtMainThread
function can be used to make the GUI more responsive even
for heavy loads such as graph updates.

Figure 2 shows the EXAFS measurement program. It is
divided into status widget on the top, control widget on the
left, and plot widget on the right. The status widget controls
the type of x, y axes and the number of graphs in the plot
widget. The control widget sets the experiment parameters
and passes those parameters to RunEngine, and the scan
(plan) is performed on the asyncio thread.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA078

WEPHA078
1274

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Figure 3: (a): Appearance of HC10E, (b): Internal design
schematic.

Fly Scan with FPGA Based Scaler
A fly scan is essential to get the encoder’s position and

the counts coming from the detectors at the same time. To
achieve this goal, a fly scan counter (see Fig. 3) with FPGA
and ODROID was designed. The direction of the motor is
confirmed by two encoder signals having a 90 degree phase
difference, and the operation (Inc. / Dec.) of the position
counter is managed. When the position counter reaches the
preset value, the detector’s counts is copied into the memory.
At the end of the transfer, the measurement restarts and the
data in memory is transferred to the EPICS IOC via serial
communication. The data is stored in the waveform records
allocated for each channel.

During the fly-scan, Bluesky’s RunEngine saves the newly
updated values into the databroker’s ‘monitor’ tables. The
plot thread periodically reads data from these ‘monitor’ ta-
bles and displays it on the graph. After the measurement,
RunEngine finally reads the waveforms from the scaler and
stores it in the ‘primary’ table. If the ‘primary’ table exists,
the plot thread uses this data instead of the ‘monitor’ tables.
In this way, data could be monitored during measurement.
Some monitored data could be lost depending on network
traffic and thread conditions. However, the data finally pro-
vided to the user is free from this problem because it is read
at once from the waveforms of the scaler.

CONCLUSION
Virtualization is an interesting technology in terms of

effectively utilizing the resources of multicore processor
environment and facillating the construction and operation of
a multi-OS in a single workstation. The types of hypervisors
and virtualization solutions were discussed, and KVM was
used to convert the linux kernel into a hypervisor to build
various types of OS on it.

EXAFS measurement software written in labview was
rebuilt using the Bluesky data collection framework to unify
the fragmented development environment. This confirmed
the efficiency and versatility of the virtualization and the
Bluesky framework. Therefore, these techniques will be
applied to the multiple beamlines at PAL.

REFERENCES
[1] GPU passthrough procedure with KVM on CentOS 7, https:
//bitbucket.org/physwkim/kvm_test/src/master/

[2] NSLS-II Software Documentation, https://nsls-ii.
github.io/

[3] bluesky, a Python data collection interface for experimental
science, https://github.com/bluesky/bluesky

[4] Ophyd - EPICS Client Abstractions, https://github.com/
bluesky/ophyd

[5] databroker, unified interface to the various data sources at
NSLS-II, https://github.com/bluesky/databroker

[6] B. V. Luvizotto, K. Attenkofer, H. Bassan, and E.
Stavitski, “XLive: Data Acquisition and Visualization
at the NSLS-II ISS Beamline”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017, pp. 962–965. doi:10.18429/
JACoW-ICALEPCS2017-TUPHA211

[7] Thomas Vincent, Valentin Valls, payno, Jerome Kieffer, V.
Armando Solé, Pierre Paleo, dnaudet, Guillaume Communie,
Pierre Knobel, Marius Retegan, Mauro Rovezzi, Pepijn Kenter,
Hans Fangohr, UUSim, Vincent Favre-Nicolin, picca, Captain-
Nemoz, woutdenolf, schooft, Tiago Coutinho, Jan Kotanski,
Christopher J. Wright, and aicampbell, “silx-kit/silx: v0.11.0:
03/07/2019”. Zenodo, 03-Jul-2019. doi:10.5281/zenodo.
3266814

[8] V.A. Sole, E. Papillon, M. Cotte, Ph. Walter, J. Susini, “A
multiplatform code for the analysis of energy-dispersive X-ray
fluorescence spectra”, Spectrochim. Acta Part B, vol. 62, 2007
pp. 63-68. doi:10.1016/j.sab.2006.12.002

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA078

Experiment Control
WEPHA078

1275

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

