
ASYNCHRONOUS DRIVER EVALUATION AND DEVELOPMENT
FOR DIGITAL SYSTEMS AT THE ARGONNE TANDEM

LINEAR ACCELERATING SYSTEM*
C. E. Peters†, J. Reyna, D. Stanton, Argonne National Laboratory, Lemont, USA

Abstract
The ATLAS (Argonne Tandem Linear Accelerating

System) accelerator at Argonne National Laboratory, near
Chicago, IL., has recently been upgraded via the addition
of a pulsed mode Electron Beam Ion Source (EBIS).
Pulsed operation requires finer levels of control of various
digital systems like fast switching high-voltage power sup-
plies and remotely controlled function generators. Addi-
tionally, pico-level and femto-level ammeters need per-de-
vice zero correction and calibration to accurately read
beam intensities. As the facility moves away from fast reg-
ister-based analog signals, new and slower digital proto-
cols adversely affect the perceived execution time of the
control system. This work presents options, research, and
results of implementing an asynchronous layer between
high level user interfaces and the low level communication
drivers in order to increase the perceived responsiveness of
the system. Solutions are evaluated ranging from in-house
codes, which implement system-wide mutual exclusion
and prioritization, to drivers available from the EPICS con-
trol system. Key performance criteria include ease of im-
plementation, cross platform availability, and overall ro-
bustness.

INTRODUCTION
The ATLAS accelerator is located at the United States

Department of Energy’s Argonne National Laboratory in
the suburbs of Chicago, Illinois. It is a National User Fa-
cility capable of delivering ions from hydrogen to uranium
[1] for low energy nuclear physics research in order to per-
form analysis of the fundamental properties of the nucleus.
The majority of the current control system has been based
on a CAMAC Serial Highway [2] (SH) architecture since
the 1980s. Access to this hardware bus from software re-
lies on PCI based personality cards which in turn connect
to the serial highway. While this system is clearly outdated
from a technology progress perspective, it continues to pro-
vide distributed serial networking with low latency and
high reliability. This improves the perceived responsive-
ness of the control system and allows simple single-
threaded access via the use of the operating system’s reg-
ister-based PCI subsystem interface.

Moving away from CAMAC and fast register access has
commonly been accomplished by interfacing to (non-
CAMAC) serial devices in the form of USB/RS-232/RS-
485 specifications. However these devices use slower baud
rates and typically control more complicated devices. This

results in longer latency delays for each command. It
should be noted this application is for a ‘slow’ control sys-
tem and all values are only updated at about ~1-2Hz.

ATLAS Control System Software Description
The ATLAS Control System (ACS) group only consists

of 2 – 5 full-time members, depending if the definition in-
cludes students and temporary assignments. Therefore, a
third-party vendor Vista Control Systems, Inc. [3] is used
to provide software libraries to supplement the creation of
database structures, operator interfaces, logging tools, etc.
The EPICS control system is acknowledged to be the larg-
est and most comprehensive offering in the space, however
the amount of overhead to implement and maintain a large
and diverse open-source package can be prohibitive for
small groups. Even borrowing individual modules like the
EPICS Asyn driver [4] can be resource prohibitive unless
the group has already committed to the full EPICS ecosys-
tem.

BENCHMARKS
In order to implement a modern solution to register base

CAMAC which do not cause the main operator interface
(OPI) to lock, we need to understand the current level of
latency in the existing software/hardware loop.

CAMAC/PCI/OPI Latency
• Single core 400 MHz Alphaserver 1200 CPU running

OpenVMS 8.2 with idle CPU usage and 1GB memory.
• Kinetic Systems 2115 PCI Serial Highway Driver run-

ning in byte-wise mode at 2.5MHz clock speed
• Single 16-bit CAMAC NAF Operations

Table 1: CAMAC Execution Latencies

Operation # of Calls Time Latency
16-bit Read 1,000,000 47 sec 47 µSec

16-bit Write 1,000,000 47 sec 47 µSec

Fast Process* 100,000 38 sec 380 µSec

OPI Slider 5000 262 sec 5,240 µSec
* A Data acquisition process running at its fastest software loop

Non-CAMAC Serial Latency
It is noted here that raw CAMAC latency is quite low

(see Table 1). This will be difficult to match. However as
more and more software overhead is added, the latency for
each loop of software adds to the hardware latency, and the
actual required latency of any replacement system becomes
more reasonable. The fastest process running on the SH is
only about 0.5msec of latency, and the human interfaces

 __

* This work was supported by the U.S. DOE, Office of Nuclear Physics,
under Contract DE-AC02-06CH11357. The research used resources of
ANL's ATLAS Facility, a DOE Office of Science User Facility.
† ChrisPeters@anl.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA119

WEPHA119
1368

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

(sliders) execute 10 times that at ~5 milliseconds. Table 2
represents latency testing on alternatives to CAMAC serial
highway communication architectures.

 These times can now be compared to modern serial:
• Single core Intel Pentium 4 at 2.8GHz running Scien-

tific Linux 6.7 with idle CPU usage and 1GB memory.
• Weiner CC-USB CAMAC Crate Controller
• Linux TCP/IP Packets with 16-bit payload.

Table 2: Non-Camac Serial Execution Latencies
Operation # of Calls Time Latency

16-bits@57600 (theoretical) N/A 277 µSec

USB CAMAC 1,000,000 265 sec 265 µSec

TCP@100Mbit 1,000,000 293 sec 293 µSec

Keithly6514 (single read) N/A 30,000 µSec

The overall conclusion of this testing is that the existing
CAMAC latency is in the ~40µSec range and modern se-
rial replacements are about an order of magnitude more.
This drives motivation to develop our own set of software
layers which provide multi-threaded support such that the
operators do not notice a significant increase in lag.

ASYNCHRONOUS SOLUTION
We can now assemble a list of requirement for our new

software layer which will enable highly responsive appli-
cations for this specific set of ACS software libraries.

Requirements
The software solution should be simple and be based pri-

marily on Linux, as this is the common operating system
of the ACS. It should use native operating system primi-
tives to accomplish locking and memory sharing. In addi-
tion, this layer should be aware of priorities of executing
threads determined by assigning a write higher priority
than read. In general the C language is used unless there
are specific object-oriented runtime advantages.

Architecture
It is important to note that VSystem is based on a remote

procedure call (RPC) signalling system which spawns mul-
tiple processes accessing a single channel. Therefore there
are 2 processes running handler code as shown in Figure 1.

Shared Memory Port Locking Algorithm
There are two sets of procedures depending on if the call

to the serial handler is a high priority or a low priority. At
this time, there are only 2 implemented priorities. In the
example below, the main OPI thread spawns a worker
thread and immediately returns, allowing the user to con-
tinue interacting with other devices or functions.

In summary, a high priority thread needs to reserve only
the mutex, but a low priority thread has to reserve both the
mutex and the semaphore thereby causing a higher proba-
bility the higher thread will execute first.

Higher Priority Thread

1. Call “sem_wait” on a semaphore in shared memory to
signal other threads a high priority thread is waiting.

2. Once semaphore is locked, it signals that other lower
priority threads have paused and we are clear to run.

3. Attempt to lock shared memory’s port mutex to ac-
quire rights to the shared serial port.

4. Now that we have acquired the port, “sem_post()” the
high priority semaphore to signal no longer waiting.

5. Do long running serial transaction….
6. When done, call pthread_cond_broadcast() on the

semaphore to wake up sleeping low priority threads.
7. Finally, unlock the port mutex to release the port.

Low Priority Thread
1. Block on attempting to lock shared memory’s mutex

to acquire rights to the port (note: no semaphore lock).
2. Call sem_getvalue() to determine if there is currently

a higher priority thread waiting, if not do transaction.
3. If the value returned by sem_getvalue() is zero, then

enter a conditional wait loop. The conditional wait
also releases the mutex allowing other processes run.

4. Get woken up by a signal from high priority thread
when the port mutex is acquired by our process.

5. Once the high priority semaphore is non-zero, do long
running serial transaction.

6. Call pthread_cond_broadcast() on the semaphore to
wake up any other sleeping low priority threads.

7. Finally, unlock the port mutex to release the port.

Shared Memory Layout
A note about shared memory is that it is assumed any

process has already acquired a pointer to this section by
supplying a common handle identifier across processes.

struct stSharedMemVars
{ pthread_mutex_t mutex;
 pthread_cond_t conditionVar;
 sem_t semHighPriority;
};
The purpose of the mutex is to represent “mutual exclu-

sive” access to a resource like a serial port. The purpose of

Figure 1: Hierarchy of key software components.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA119

Software Technology Evolution
WEPHA119

1369

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the condition variable is to signal low priority threads to
sleep and be woken up asynchronously when a higher pri-
ority thread completes. The purpose of the high priority
semaphore is to maintain a count of the number of pro-
cesses system wide that are high priority, and then asyn-
chronously signal the other processes to wake-up and re-
sume attempting to lock the shared resource (port).

IMPLEMENTATION AND TESTING
The asynchronous and multi-threaded method described

above has been implemented in the ACS in two different
pieces: 1.) An example high-level handler for Keithley
Picoammeter 6514 device driver has been re-written such
that blocking calls to the lower serial layer are moved to
their own “threadEntry” function with new calls to spawn
those threads, and 2.) The lower level serial device code
has been modified to implement the locking algorithm
based on shared memory described in the “Algorithm” sec-
tions above.

**For the following tests an artificial 0.5 second delay
was added to the serial port driver to simulate a partic-
ularly low baud rate or long running process.**

• Send Qty 4 high priority commands to the device sim-
ultaneously, verify main thread returns quickly.

• Send Qty 4 high priority commands to the device sim-
ultaneously, and verify the low priority threads wait.

Figure 2: Main OPI thread returns in <1mS.

Figure 3: Low priority threads sleeping.

Figure 2 is a debugging printout from the higher priority
control process. Here we can see 4 threads being spawned
with different thread IDs. Next, we see one thread at a time
acquire a lock on the serial port and execute several long-
running commands which would normally block the parent
thread. At the bottom we see each thread in turn complete
with no errors. Additionally, the parent thread returns gen-
erally in the microsecond range.

At the same time this is happening, Figure 3 shows a
second monitor process polling 2 values from the device.
When the high priority threads run, the block execution of
the lower priority threads. We can see the low priority
threads sleeping, but still returning control to the calling
thread within several microseconds. Eventually the low
priority threads get released from their conditional wait and
begin sending messages once again.

CONCLUSION
The purpose of this work is to implement asynchronous

and priority based threading on top of the regular serial port
driver code. While this type of layer is common in control
systems like EPICS which have a single process per port,
it does not come for free on other software packages. We
have demonstrated that by using a combination of shared
memory space, shared mutex and condition variables, and
careful thread management, a similar feature to EPICS
Asyn can be implemented and drastically decreases per-
ceived execution time of the control system to lower than
at least the ~13mS theoretical latency of the human eye it-
self [5].

ACKNOWLEDGEMENTS
This work was supported by the U.S. Department of En-

ergy, Office of Nuclear Physics, under Contract No. DE-
AC02-06CH11357. The research used resources of ANL’s
ATLAS Facility, a DOE Office of Science User Facility.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA119

WEPHA119
1370

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

REFERENCES
[1] “Stable Beams Available from ATLAS”,

www.phy.anl.gov/atlas/facility/sta-
ble_beams.html, retrieved October 12, 2015.

[2] IEEE Std. IEEE Std. 595-1982, Standard Serial Highway In-
terface System, The Institute of Electrical and Electronics En-
gineers, Inc., 345 East 47th Street, New York, NY 10017.

[3] Vista Control Systems, Inc. https://www.vista-con-
trol.com/

[4] EPICS Asyn Driver, https://epics.anl.gov/mod-
ules/soft/asyn/

[5] Potter, M.C., Wyble, B., Hagmann, C.E. et al., Atten Percept
Psychophys (2014) 76: 270. doi.org/10.3758/s13414-
013-0605-z

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA119

Software Technology Evolution
WEPHA119

1371

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

