
CS-STUDIO ALARM SYSTEM BASED ON KAFKA*
K.-U. Kasemir, Oak Ridge National Laboratory, Oak Ridge, USA

Abstract
The CS-Studio alarm system was originally based on a

relational database and the Apache ActiveMQ message ser-
vice. The former was necessary to store configuration and
state, while the latter communicated state updates and user
actions. In a recent update, the combination of relational
database and ActiveMQ has been replaced by Apache
Kafka. We present how this simplified the implementation
while at the same time improving performance.

OVERVIEW
The Control-System-Studio (CS-Studio) alarm system

was developed to support control room operators [1]. It
monitors a configurable list of process variables (PVs)
from the Experimental Physics and Industrial Control Sys-
tem (EPICS), using either the Channel Access or the newer
PV Access network protocol [2]. Whenever a PV enters an
alarm state, the alarm system remembers the time and
value of the alarm. It lists active alarms on a user interface
and will optionally also verbally annunciate each new
alarm. Operators can inspect the list of active alarms, ac-
cess guidance on how to handle the alarm and open display
panels that offer more detail for the affected subsystem. Af-
ter operators acknowledge the alarm and the PV returns
into a normal state, the alarm clears.

The alarm system is fully distributed. You may install
one or more alarm configurations, and one or more opera-
tors can concurrently interact with them.

ORIGINAL IMPLEMENTATION:
RDB & JMS

The alarm system needs some way to store its configu-
ration, consisting of the PVs to monitor, their associated
guidance and related display links. In addition, the system
requires a message bus to communicate PV state changes,
annunciation messages and operator actions like acknowl-
edgements.

In the original implementation, a relational database
(RDB) stores the configuration, and Apache ActiveMQ
provides the message bus (JMS). Each alarm configuration
is handled by one alarm server process, typically running
as a Linux service. Operators can start one or more alarm

clients to interact with the alarm system. All servers and
clients can share the same RDB and JMS instance.

This appeared to be a good design choice at the time be-
cause an RDB is very well suited for storing information,
while JMS is a high-performance message bus. The imple-
mentation of the alarm system toolkit was, however, com-
plicated by the fact that interactions with storage and the
message bus typically overlap.

 When an alarm client starts up, it reads the configura-
tion, which can take several seconds. While it is reading
one such snapshot of the configuration, other alarm clients
may concurrently change the configuration. Such changes
are communicated via the message bus. A proper alarm cli-
ent implementation thus needs to:

1) Subscribe to JMS and buffer received change indi-

cations in memory.
2) Read the last saved configuration from the RDB.
3) Apply the buffered changes to update the in-

memory configuration to the current state.
4) From then on directly apply received JMS change

indications to the in-memory state.

Similarly, the alarm server implementation needs to:

1) Send alarm state changes via JMS so that running

alarm clients can receive them with minimal delay.
2) Write the most recent state of each alarm to the

RDB, so that new alarm client instances can start
with the most recent alarm state as persisted in the
RDB and don’t need to wait for a state change via
JMS to be up-to-date.

While this was successfully implemented, details of the
software appeared overly complicated. Of the two key sup-
port technologies, JMS and the RDB, the latter was a per-
formance bottleneck. Sending all messages through JMS
on the other hand proved to be very efficient and allowed
the addition of logging and analysis tools, for example to
determine which alarm triggers most frequently, without
impacting the running alarm servers and clients [3].

NEW IMPLEMENTATION:
APACHE KAFKA

When porting the alarm system toolkit from the original
Eclipse-based CS-Studio development to a standalone plat-
form [4], we used this opportunity to investigate new tech-
nologies for storage and message bus, i.e. the RDB and
JMS functionality.

* This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The
US government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for US govern-
ment purposes. DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2001

WESH2001
1504

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

Apache Kafka
Apache Kafka is a messaging service similar to JMS.

Multiple clients can connect to the Kafka service and ex-
change messages. Kafka can be deployed as a single server
or a distributed, load-balancing cluster. Kafka supports
multiple ways of “streaming” messages. For example, it
can store messages and then very efficiently send all stored
messages to each newly connected client. Moreover, it sup-
ports “Log Compaction”, which is very helpful for storing
the alarm system configuration and state [5]. By using Log
Compaction, Kafka was able to not only handle the JMS
functionality of communicating changes, but also the RDB
functionality of storing the alarm configuration and state.

The alarm configuration is hierarchical. For example, all
alarms related to the accelerator vacuum can be placed in a
“Vac” section below a top level “Accel” configuration.
Guidance messages and links to related displays apply to
all sub-sections of the hierarchical configuration, which of-
ten simplifies the task of configuring the system because,
for example, contact information that applies to all vacuum
alarms can simply be attached to “/Accel/Vac” and there is
no need to manually assign it to each vacuum related PV.

Kafka messages consist of a key and a value. We use the
path to an alarm configuration item as the message key, and
the message value holds the configuration detail. For ex-
ample, when a user adds two PVs to the alarm configura-
tion, then updates the description of the first PV, and finally
adds some Vacuum guidance, the Kafka message stream
looks like this, ordered by time starting with the oldest
message:

config:/Accel/Vac/PIn = {“description”:”Pressure”}
config:/Accel/Vac/POut = {“description”:”Outlet Pres.” }
config:/Accel/Vac/PIn = {“description”:”Inlet Pressure”}
config:/Accel/Vac = {“guidance”:”Call 123-456-8910”}

Similarly, when the alarm server detects an alarm on a
PV, then on another PV, an operator acknowledges the first
alarm and finally the alarm on the first PV clears, the alarm
server sends the following state update messages:

state:/Accel/Vac/PIn = {“severity”:”MINOR”}
state:/Accel/Vac/POut = {“severity”:”MAJOR” }
state:/Accel/Vac/PIn = {“severity”:”MINOR_ACK”}
state:/Accel/Vac/PIn = {“severity”:”OK”}

Actual alarm system messages contain additional infor-
mation, for example time stamps, which are omitted for
clarity.

Kafka Log Compaction
Over time, PVs change their state and users update the

alarm system configuration. Kafka offers several options
for handling the resulting growing stream of Kafka mes-
sages.

Kafka can be configured to only distribute messages to
listeners without persisting them. We use this mode for
“command” messages, sent by the user interface when the
operator acknowledges an alarm. The alarm server receives

the acknowledgment, updates the alarm state, and the com-
mand is then no longer needed.

Alternatively, Kafka can be configured to store all re-
ceived messages. When a client connects to Kafka, it can
receive a replay of all past messages. This is useful to ana-
lyze the history of alarms, for example to detect the most
frequent alarm. In an operational setup, however, this is not
practical. The persisted message stream will eventually ex-
haust the available disk space. More important, an operator
who opens the alarm client is not interested in a time-con-
suming replay of obsolete messages. He/she needs to know
the current state of the alarm system.

Kafka can automatically delete older messages after a
configurable time, which avoids disk space limitations, but
is not useful for the alarm system configuration and state
messages. For example, a “config” message for the guid-
ance of accelerator vacuum alarms may be 2 years old, but
there was never another “config” message for the item be-
cause the same guidance remains applicable. The state of a
specific PV on the other hand may change every second,
generating numerous “state” messages, and all but the very
last one are obsolete. Simply deleting all messages older
than, for example, a day would thus drop valid configura-
tion data yet keep obsolete state messages.

Kafka “Log Compaction” is a retention mode that turns
out to be perfectly suited to storing alarm system config
and state messages. With Log Compaction, Kafka periodi-
cally transitions messages from the active segment where
new messages are added to a long-term storage segment.
In the long-term storage segment, all but the last message
for each key are deleted.

To illustrate, assume we generated the previously shown
messages in the following interleaved order, i.e. users
changed the configuration while state updates occurred:

Active Segment:
config:/Accel/Vac/PIn = {“description”:”Pressure”}
config:/Accel/Vac/POut = {“description”:”Outlet Pres.” }
state:/Accel/Vac/PIn = {“severity”:”MINOR”}
state:/Accel/Vac/POut = {“severity”:”MAJOR” }
state:/Accel/Vac/PIn = {“severity”:”MINOR_ACK”}
config:/Accel/Vac/PIn = {“description”:”Inlet Pressure”}
config:/Accel/Vac = {“guidance”:”Call 123-456-8910”}
state:/Accel/Vac/PIn = {“severity”:”OK”}

Now let’s assume that the first six messages are old

enough to move into the long-term segment:

Long-Term Segment:
config:/Accel/Vac/PIn = {“description”:”Pressure”}
config:/Accel/Vac/POut = {“description”:”Outlet Pres.” }
state:/Accel/Vac/PIn = {“severity”:”MINOR”}
state:/Accel/Vac/POut = {“severity”:”MAJOR” }
state:/Accel/Vac/PIn = {“severity”:”MINOR_ACK”}
config:/Accel/Vac/PIn = {“description”:”Inlet Pressure”}

Active Segment:
config:/Accel/Vac = {“guidance”:”Call 123-456-8910”}
state:/Accel/Vac/PIn = {“severity”:”OK”}

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2001

Control System Infrastructure
WESH2001

1505

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Messages in the long-term segment are then compacted
by keeping only the last message for each key. Previous
messages for the same key are removed from the long-term
segment. Applied to the above example messages, the
long-term segment will be left with only the following
messages.

Long-Term Segment:
config:/Accel/Vac/POut = {“description”:”Outlet Pres.” }
state:/Accel/Vac/POut = {“severity”:”MAJOR” }
state:/Accel/Vac/PIn = {“severity”:”MINOR_ACK”}
config:/Accel/Vac/PIn = {“description”:”Inlet Pressure”}

Active Segment:
config:/Accel/Vac = {“guidance”:”Call 123-456-8910”}
state:/Accel/Vac/PIn = {“severity”:”OK”}

Kafka transparently performs this message stream seg-

mentation and Log Compaction without directly exposing
details to clients. When an alarm system tool connects to
Kafka, it simply receives a stream of messages based on
the remaining long-term segment items and the active seg-
ment.

config:/Accel/Vac/POut = {“description”:”Outlet Pres.” }
state:/Accel/Vac/POut = {“severity”:”MAJOR” }
state:/Accel/Vac/PIn = {“severity”:”MINOR_ACK”}
config:/Accel/Vac/PIn = {“description”:”Inlet Pressure”}
config:/Accel/Vac = {“guidance”:”Call 123-456-8910”}
state:/Accel/Vac/PIn = {“severity”:”OK”}

In this example, the stream contains only the relevant

“config” messages. The “state” messages include two up-
dates for the “PIn” PV, we receive both the older “MI-
NOR_ACK” and the final “OK” state.

Log compaction thus guarantees that the order of mes-
sages is preserved. For each key, i.e. for each “con-
fig:/path/to/item” and each “state:/path/to/item”, we will
always receive the most recent value. Log compaction is
not perfect in the sense that we will only receive the most
recent value. We might receive a few older values before
we reach the most recent one, but this still constitutes a
vastly reduced message count compared to a complete,
non-compacted message history.

KAFKA-BASED ALARM TOOLS
The alarm system tool implementation based on Kafka

is significantly simpler than the previous implementation
for the combination of RDB and JMS. We simply subscribe
to Kafka messages and handle them as they are received.

There is no need to buffer and then merge information from
the RDB and JMS, i.e. from two different technologies.

Alarm Server
The alarm server typically runs as a Linux service. It

subscribes to Kafka “config” messages, connects to the re-
quested PVs and maintains their alarm state based on the
same logic for latching and annunciating alarms as had
been implemented in the original toolkit [1]. If offers a
console for administrators to check on the alarm configu-
ration and the state of PVs, but its main purpose is to send
alarm “state” messages to clients.

Alarm User Interface
Alarm client tools subscribe to the “config” as well as

“state” messages to obtain the alarm configuration and to
display received alarms. Because of Log Compaction, a
newly started alarm client may receive a small number of
older alarms before it sees the most recent state, but the
tools are capable of handling a high message rate, and the
few additional messages are easily consumed.

The Alarm Table (Fig. 1) is the primary operator inter-
face. It lists all active alarms. For the ideal case of a fault-
free machine, it is empty, but as soon as alarms trigger, they
are listed for operators to inspect. Operators can sort alarms
by time, severity, PV name. They acknowledge them to in-
dicate that the issue has been noted and is being handled.
Acknowledged alarms move to the bottom section of the
alarm table, which can be minimized to hide acknowledged
alarms. Once the PV goes out of alarm state, it vanishes
from the table.

The Alarm Tree display (Fig. 2) allows configuring the
system by adding, removing and editing items. It can also
be useful to monitor alarm states because it reflects the hi-
erarchical configuration, indicating if several alarms are all
clustered below one area of the configuration, or if they
indicate a problem that, for example, affects several beam
lines.

Both the Alarm Tree and Alarm Table offer access to
alarm guidance information and related display links, but
the Alarm Table only displays active alarms, while the
Alarm Tree allows viewing and configuring all items, in-
cluding those that are currently not in alarm.

Optional alarm system components that operators can
start as desired include the Annunciator which performs
audible annunciations of new alarms. The Area Panel dis-
plays colored blobs for the top-level elements of the alarm
system configuration which can easily be recognized when
viewed from a distance.

Figure 1: Alarm table.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2001

WESH2001
1506

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

Figure 2: Alarm tree.

Performance
The purpose of the alarm system is to assist operators,

which limits the practical alarm rate to a level that human
operators can handle [6]. The design of the tools is never-
theless such that it can handle a high number and rate of
alarms.

Tests of the original implementation based on JMS and
an RDB were able to import a configuration with 50000
PVs in about 5 minutes. The original alarm tree needed
about 30 seconds to then load this configuration, and it
could display about 10 alarm updates per second.

The new implementation based on Kafka can import
100000 PVs, i.e. a larger configuration, in only 10 seconds,
which the alarm tree displays in about 10 seconds, then
handling 500 state changes per second. More important
than the vast improvement in importing a configuration is
that fact that the new operator interface remains respon-
sive. In the original implementation, the alarm tree was
static until the complete configuration had been loaded. In
the new implementation, the alarm tree keeps updating,
displaying new items as they are loaded from the configu-
ration. The new implementation does not need to distin-
guish between loading the configuration from an RDB and
then updating it in response to JMS messages. Everything
is based on handling a stream of Kafka messages, and load-
ing the configuration is technically just an initial burst of
messages that is handled the same way as any received
Kafka message.

Observations
While the alarm system implementation based on Kafka

is generally more performant than the previous RDB &
JMS version, there is one peculiarity. The alarm system
configuration is now a continuous stream of Kafka “con-
fig” messages. This works well for the distributed alarm
server and client tools which are designed to handle online
configuration changes, but it complicates the design of a
tool for saving a configuration snapshot. There is techni-
cally no difference between the initial burst of “config”

messages when loading the configuration, and a later “con-
fig” message sent when a user updates the configuration.
To obtain a configuration snapshot, our current implemen-
tation reads configuration messages until no more changes
are received for a certain time (4 seconds) and considers
that the current configuration. If another configuration up-
date is received while the tool writes the snapshot file, it
issues a warning, so the user can decide to re-run the snap-
shot tool.

Upgrading
The new Kafka-based alarm system offers the same

functionality as the previous version based on RDB and
JMS, albeit with better performance. The alarm server
logic for handling alarm state transitions is in fact exactly
the same code, passing the same unit tests, thereby guaran-
teeing identical behaviour. However, the rest of the archi-
tecture is different. The new alarm server cannot interact
with the older user interface tools and vice versa. To up-
grade, both the CS-Studio user interface and the alarm
server need to be updated at the same time. Both the old
and the new tools allow importing and exporting the alarm
configuration in the same XML file format. In practice it is
therefore easy to export an existing configuration, update
the user interface and alarm server to the current toolset,
and then import the original alarm configuration.

ECOSYSTEM
By sending alarm messages via Kafka, additional tools

can react to these messages. For example, an alarm logger
service can forward messages to a generic message search
and analysis tool like Elastic Search [7], which then allows
alarm system maintainers to monitor, for example, the
number of alarms over time, or to determine which alarm
PVs trigger most frequently. Such information can be in-
valuable in detecting “noisy” alarms before they impact the
productivity of operators who use the alarm system.

CONCLUSION
While the original alarm system toolkit has served sev-

eral sites for about a decade, and continues to do so, the
update from using a combination of RDB and JMS to
Kafka allowed us to simplify the implementation and im-
prove its performance headroom. Existing configurations
can be transferred between the two implementations,
providing a smooth upgrade path. The alarm system for the
instrument hall of the Oak Ridge National Laboratory
Spallation Neutron Source has successfully been using this
new alarm system since January 2019.

REFERENCES
[1] K.-U. Kasemir, X. H. Chen, and E. Danilova, “The Best Ever

Alarm System Toolkit”, in Proc. 12th Int. Conf. on Accelera-
tor and Large Experimental Physics Control Systems
(ICALEPCS'09), Kobe, Japan, Oct. 2009, paper TUA001, pp.
46-48.

[2] L. R. Dalesio et al., “EPICS 7 Provides Major Enhancements
to the EPICS Toolkit”, in Proc. 16th Int. Conf. on Accelerator

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2001

Control System Infrastructure
WESH2001

1507

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

and Large Experimental Physics Control Systems
(ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp. 22-26.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL01

[3] X. Geng, S. M. Hartman, and K.-U. Kasemir, “Alarm Ration-
alization: Practical Experience Rationalizing Alarm Configu-
ration for an Accelerator Subsystem”, in Proc. 12th Int. Conf.
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS'09), Kobe, Japan, Oct. 2009, paper
WEP109, pp. 606-608.

[4] K.-U. Kasemir, K. Shroff, “Future of CS-Studio”, EPICS
Meeting at ICALEPCS2017,
https://indico.esss.lu.se/event/889/
contributions/7050/

[5] Apache Kafka Documentation, Log Compaction,
https://kafka.apache.org/documentation/
#compaction

[6] B. Hollifield, E. Habibi, The Alarm Management Handbook,
ISBN: 978-0-9778969-2-9, PAS, Inc. 2006.

[7] Elastic Search Documentation,
https://www.elastic.co/guide

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2001

WESH2001
1508

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

