
CONTROL SYSTEM FOR FAST COMPONENTS OF ELECTRON BEAM
WELDING MACHINES

A. V. Gerasev, P. B. Cheblakov, Budker Institute of Nuclear Physics, Novosibirsk, Russia

Abstract
Modern electron beam machines for different applications

including welding, additive technologies and etc. consist
of many different subsystems, which should be controlled
and monitored. They could be divided by so-called fast and
slow subsystems. Slow subsystems allow reaction time to be
around a couple of seconds that can be implemented using
PC. Fast subsystems require time to be around hundreds of
microseconds combined with flexible logic.

We present an implementation of such fast system for me-
chanical moving platform and electron beam control. The
core of this system is a single board computer Raspberry Pi.
We employed a technique of fast waveform generation using
Raspberry Pi on-chip DMA to manipulate stepper motors.
Raspberry Pi was equipped by external CAN controller to op-
erate an electron beam via CAN DACs. Special software was
developed including libraries for low- and high-level tech-
nical process control written in C and Rust; and in-browser
graphical user interface over HTTP and WebSockets. Fi-
nally, we assembled our hardware inside standard 19-inch
rack mount chassis and integrated our system inside experi-
mental electron beam machine infrastructure.

RASPBERRY PI AND ELECTRON BEAM
WELDING MACHINE CONTROL

Figure 1: Small experimental electron beam machine in
Budker Institute of Nuclear Physics.

Electron beam technologies become increasingly applica-
ble in different areas. Their principle is based on beam of
electrons hitting the object in vacuum and locally heating
it. This approach is used for precise cutting and welding,
and also for 3D-printing. In our institute research of such
technologies is carrying out and a couple of different elec-
tron beam machines have already been constructed. One of
them is experimental small electron beam machine shown

in Fig. 1. One of successful experiments on this machine
was 3D-printing with wolfram [1].

The machine contains so-called fast and slow components.
Slow components like power supply and vacuum subsystem
require the reaction time to be about one second and are suc-
cessfully handled by general-purpose CX [2] control system.
But for some experiments it was necessary to handle spe-
cific components like beam parameters control subsystem in
more fast and precise manner. The components that require
such control are called fast components.

Due to the experimental nature of the machine along with
providing required performance and precision the control
system of fast components should be flexible and easy to
develop. We found that Raspberry Pi is the most suitable
platform for such system implementation.

Raspberry Pi

Figure 2: Raspberry Pi 3.

Raspberry Pi is a fully featured single board computer
(shown in Fig. 2. There are several versions of this computer.
We used versions 2 and 3. Version 2 is based on Broadcom
BCM2836 system on chip (SoC) which contains 32-bit quad-
core 900 MHz Cortex-A7. Version 3 is based on Broadcom
BCM2837 SoC with 64-bit quad-core 1.2 GHz Cortex-A53.
There is also Graphics Processing Unit (GPU) on the chip -
VideoCore IV 250 MHz and 400 MHz accordingly. Along
with CPU and GPU SoC also contains different peripherals
devices (almost the same for both chips) including timers,
interrupt, direct memory access (DMA), pulse width modu-
lation (PWM) controllers. These models of Raspberry Pi has
a lot of external interfaces like Ethernet, 4xUSB, General
Purpose Input-Output (GPIO), 4xSPI and 2xUART.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3002

WESH3002
1516

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology



Control System for Fast Components
There are two fast components required to be controlled

with fast control system:
• 3 digital-to-analog converters (DAC) setting beam cur-

rent and x- and y-deflection. The frequency of these
DACs is 100 Hz. The communication with them occurs
via CAN bus.

• Mechanical moving plate driven by 3 stepper motors
controlled via low-level step-dir protocol with the fre-
quency up to 2 kHz.

The first component is effectively handled by PICAN2
Duo Iso adapter mounted on top of the Raspberry Pi (shown
in Fig. 3). This adapter is put onto GPIO pins and is con-
trolled by Linux via standard driver that allows user space
access via Socket-CAN interface. The latency of non-real-
time Linux on Raspberry Pi is small enough to provide 100
Hz communication via CAN bus.

Figure 3: PiCAN2 Duo Iso adapter mounted on top of Rasp-
berry Pi.

To operate the second component the latency of non-real-
time Linux is too high. But we have found a relatively tricky
way of generating such impulses via Raspberry Pi hardware
peripherals - particularly DMA and PWM [3].

DMA on Raspberry Pi is the chain of control blocks where
previous block points to the next. The block does very simple
operation - it copies specified amount of bytes from specified
source address into destination one. All peripherals includ-
ing GPIO are mapped on the memory so DMA can also
control the hardware. PWM controller is used to provide
precise delay mechanism. Using this technique Raspberry
Pi can generate impulses with the frequency up to 10 kHz
and the timing precision is around 1 us that fully meets our
requirements.

The controls system for these components were imple-
mented in a modular manner. The stepper motor control was
implemented in our librpicnc [4] library that uses pigpio [5]
library for hardware access. Our library consists of low- and
high-level parts.

• Low-level part receives low-level commands for sepa-
rate axes, synchronizes them and generates waveforms
for pigpio library. This part is written in C and was
partially rewritten in Rust [6].

• High-level part is a task manager that receives high-
level tasks and translates them to low-level axis com-
mands.

This library provides a C application programming in-
terface (API) to control the moving plate. Also a Python3
binding to this library was implemented. To control mov-
ing plate using graphical interface the control server was
developed. Control server is aiohttp web server that commu-
nicates with in-browser graphical user interface (GUI) via
HTTP and Websocket protocols.

VARISCITE VAR-SOM-MX7 SYSTEM ON
MODULE

Figure 4: VAR-SOM-MX7 Module.

The fundamental flaw in using Raspberry Pi to control
stepper motors in real-time is that its DMA logic is very
primitive. It can produce only pre-built fixed sequence of
signals in real-time but any branching or feedback handling
require non-real-time Linux to be involved.

We were looking for embedded device which is more flex-
ible but still provides real-time operation. We have found
Variscite VAR-SOM-MX7 system on module (SoM) (shown
in Fig. 4) which is based on NXP/Freescale i.MX7 SoC.
i.MX7 is asymmetric multiprocessor chip - it has both dual
ARM Cortex-A7 1.2 GHz for running general purpose OS
and performing high-level non-real-time tasks and ARM
Cortex-M4 200MHz for low-level real-time tasks. i.MX7
Cortex-A7 cores supports GNU/Linux with Debian and
Yocto Linux distributives supplied by Variscite, and Cortex-
M4 which is usually employed in microcontroller devices
supports FreeRTOS.

EPICS DEVICE SUPPORT ON
EMBEDDED ELECTRONICS

Our work previously been based on electron beam welding
machine control has gradually evolved to VEPP-4 particle
accelerator. We are planning to use Variscite VAR-SOM-
MX7 as a digital part of power supply controller.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3002

Hardware Technology
WESH3002

1517

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



The main VEPP-4 control system is EPICS so it is required
for the controller to interact with it. Because EPICS could
be built for ARM architecture and i.MX7 is equipped with
relatively high-performance Cortex-A7 cores it is reasonable
to consider the possibility of running EPICS device support
directly on the controller without using any intermediate
gateways between the device and control system.

We have made a simple stress test [7] for EPICS device
support. The setup was the following: a simple device sup-
port program [8] was ran on a VAR-SOM-MX7 and multiple
clients were connected to the server via 1 Gbps Ethernet.
The clients physically were ran on a single machine but used
different MAC- and IP-addresses. One client wrote a new
waveform containing 20000 point of DOUBLE type into
process variable (PV) and the server broadcast these data
to other subscribed clients, and this operation was repeated
continuously. The delay between the sending of the wave-
form and its receiving by the last client was measured along
with Cortex-A7 CPU load.

There were ran two attempts: for 20 and 256 connected
clients. For 20 clients (this number is usual number of clients
connected to such kind of device on VEPP-4) the delay was
equal to about 100 ms and the CPU load was 40-60% (the
full load of dual-core CPU is 200%). For 256 clients the
delay was about 1 second and the load was 80-120%.

So we can make a conclusion that i.MX7 is able to manage
a regular load of power supply device support as well as 10
times higher load.

RUST PROGRAMMING LANGUAGE
Rust [6] is a modern programming language. It is declared

to be fast and memory-efficient, because it is compiled to
native code and has no runtime or garbage collector. Rust
is designed to be safe - it guarantees memory- and thread-
safety at compile-time. Also Rust is actively developed and
has a wide range of tools. Because of these advantages
Rust is a good candidate to use in physics control systems
development which require stability and performance. Also
because of its resource efficiency it is reasonable to use Rust
in embedded devices and moreover this application is one
of the main efforts of Rust development team [9].

We decided to try Rust in our tasks. At first we success-
fully applied Rust for low-level interaction with peripherals
on Raspberry Pi.

For now we use Rust in device support development for
EPICS control system. The advantages of using Rust in

such case is that it simplifies the software development and
reduces time spent for debugging. We have created EPICS
binding for Rust [10] and implemented device support and
driver for Keysight 53220A frequency counter via LXI in-
terface fully in Rust for use on VEPP-4 facility [11]. The
template of device support in Rust [12] was created to make
implementing device support for other devices easier.

REFERENCES
[1] Yu. I. Semenov et al., “3D printer mockup for manufactur-

ing metal structures from refractory metals using electron
beam additive technologies”, VI Conference of Lasers and
Plasma Technologies (CLAPT–2015), March 24-27, 2015,
Novosibirsk, Russia.

[2] D. Bolkhovityanov, P. Cheblakov, F. Emanov, “CXv4, a Mod-
ular Control System”, in Proc. 15th International Conference
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS 2015), Melbourne, Australia, 17-23 Oct
2015. doi:10.18429/JACoW-ICALEPCS2015-WEPGF093

[3] Waveforms using Raspberry Pi DMA,
https://hackaday.io/project/
158810-yet-another-pi-dma-hack-yapidh/details

[4] Source code of “librpicnc” library, https://github.com/
binp-automation/librpicnc

[5] Source code of “pigpio” library, https://github.com/
joan2937/pigpio

[6] Rust Programming Language, https://www.rust-lang.
org/

[7] EPICS stress test scripts and setup, https://github.com/
binp-automation/epics-stress-test

[8] EPICS device support for testing Cortex-A7 perfor-
mance, https://github.com/binp-automation/
devsup-template/tree/arm

[9] Rust for embedded devices, https://www.rust-lang.
org/what/embedded

[10] EPICS bindings for Rust, https://github.com/
binp-automation/epics-rs

[11] EPICS device support and driver for Keysight 53220A fre-
quency counter written in Rust, https://github.com/
binp-automation/ksfc-devsup

[12] EPICS device support template for Rust, https://github.
com/binp-automation/devsup-template

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH3002

WESH3002
1518

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology


