
VACUUM CONTROLS CONFIGURATOR:
A WEB BASED CONFIGURATION TOOL FOR LARGE SCALE

VACUUM CONTROL SYSTEMS

A. Rocha†, I. Amador, S. Blanchard, J. Fraga, P. Gomes, G. Pigny, P. Poulopoulou, C. Lima
CERN, Geneva, Switzerland

Abstract
The Vacuum Controls Configurator (vacCC) is an

application developed at CERN for the management of
large-scale vacuum control systems. The application was
developed to facilitate the management of the
configuration of the vacuum control system at CERN, the
largest vacuum system in operation in the world, with over
15,000 vacuum devices spread over 128 km of vacuum
chambers. It allows non-experts in software to easily
integrate or modify vacuum devices within the control
system via a web browser. It automatically generates
configuration data that enables the communication
between vacuum devices and the supervision system, the
generation of SCADA synoptics, long and short term
archiving, and the publishing of vacuum data to external
systems. VacCC is a web application built for the cloud,
dockerized, and based on a microservice architecture. In
this paper, we unveil the application's main aspects
concerning its architecture, data flow, data validation, and
generation of configuration for SCADA/PLC.

INTRODUCTION
In the early 2000’s, during the construction of the LHC

and anticipating a considerable increase in the number of
vacuum devices to be controlled, a software application
(vacDB-Editor) and a set of databases (vacDB) were
developed to homogenize and automate the configuration
of the SCADA and PLCs for CERN’s vacuum systems.
Figure 1 shows a simplified overview of this application
with its main building blocks.

Export Module

SCADA Configuration Files

PLC Configuration Files

SCADA server

PLCs

User Consoles

Controllers

LayoutDB Synchronizer

Data Validation and
vacDB CRUD

vacDB

Layout DB

Survey DB

UI

vacDB Editor

Figure 1: vacDB-Editor overview.

Users interact with the vacDB-Editor user interface,
where they can modify the configuration of the control
system (adding/removing equipment, modifying
equipment attributes, configuring vacuum sectors, alarms).
After validating user input, data is persisted in vacDB, and
from it, an export functionality generates the configuration
files that are used by both the SCADA (WinCC-OA) and
PLCs (Siemens S7/TIA). These files allow PLCs to
communicate with device controllers, enable the

communication between the SCADA and PLCs, and
configure all SCADA functionalities such as
automatically-generated graphical interfaces, archiving,
alarms, and sharing of data with external systems.

In addition, the vacDB-Editor provides a functionality to
import equipment and sectorization data from CERN’s
Layout database. All of the described functionalities (user
interface, configuration exporter, Layout DB synchronizer,
and data validation & persistence) are packaged into a
single monolithic application, which runs on each user’s
desktop computer.

The Need for Upgrading the vacDB-Editor
Over the past years it has become increasingly difficult

to maintain and upgrade the existing vacDB-Editor
application. This is due to its obsolete technology stack,
written in Java 6, using an old version of Oracle‘s ADF
framework, whose development is dependent on a no
longer supported IDE, JDeveloper 10g, released in 2007
[1]. Because of mandatory upgrades of the Java runtime
environment at CERN, the vacDB-Editor, using older
versions of Java, became more and more unstable, with
frequent bugs and crashes reported by the users.

In late 2018 it was announced at CERN that a mandatory
update had to be performed to upgrade Oracle databases
[2], from version 11g to 18c, on all of CERN’s production
instances, affecting vacDB. Since Oracle 18c requires a
more recent JDBC driver, not available in JDeveloper 10g,
an unsupported migration of the vacDB-Editor was
performed to support the new driver. While this migration
was extremely difficult to perform, it appears to have been
successful. It is however impossible to be sure that it will
continue working as new Java runtime environments get
deployed at CERN. Combining the technical reasons above
with the scarce user base of ADF and JDeveloper, it was
decided to rewrite the vacDB-Editor application using
modern technologies, on a micro-service architecture,
allowing us to be more resilient to technological
advancements in the future. The new version of the vacDB-
Editor is called vacCC, short for Vacuum Controls
Configurator.

HIGH LEVEL ARCHITECTURE
vacCC is based on a microservice architecture, where

each functionality is handled by an independently
deployable application [3]. Although more complex to
implement due to the increasing number of software parts,
interactions, and underlying infrastructure, the usage of
microservice architectures has been shown to bring
important advantages over monolithic applications. We

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA123

Software Technology Evolution
MOPHA123

511

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

consider the following advantages to be the most relevant
for our case:

• Allows for individual upgrades of each microservice,
as opposed to monolithic applications, where the entire
application needs to be upgraded at once.

• Improved service resilience as the failure of a
microservice will not affect the behaviour of other
functionalities.

• Allows different programming languages to coexist in
the same application, enabling us to choose the right
tool for the job.

• Provides a logical separation of concerns, making
software better organized, and therefore easier for
software developers to master, develop, test and
maintain their code.

vacCC

Front End
Validation

and
Persistence

Exporter Synchronizer

vacDB

Figure 2: vacCC microservices.

According to Figure 2, the application logic was divided
into 4 microservices:

• Front end: the web graphical interface that allows
users to edit the configuration of the control system.

• Validation & persistence: exposes RESTful APIs [4]
for other services to interact with vacDB, ensuring the
validity of data used in CRUD operations.

• Exporter: generates SCADA and PLC configuration
files from vacDB data.

• Synchronizer: synchronizes CERN’s accelerator
equipment database (Layout DB) with vacDB.

All vacCC microservices are containerized and
orchestrated in Openshift [5], a Kubernetes [6] application
platform.

Router

FrontEnd

Validation
and

Persistence

FrontEnd
PODs

Exporter

vacDB

Load Balancers

/backend Validation and
Persistence

PODs

Exporter
PODs

Synchronizer
Synchronizer

PODs

/

/exporter

/synhronizer

www.vacdbeditor.cern.ch

Figure 3: Deployment architecture.

Figure 3 illustrates the architecture of vacCC in
production and development environments. An Openshift
router exposes the application to CERN’s General Purpose
Network (GPN). Based on the request URL, the router will
forward HTTPs requests to the appropriate load balancer,
which will in turn forward the request to a microservice
Pod [7] in a round-robin fashion. In addition to forwarding
requests to Pods, load balancers provide a service
discovery feature. Every time a new Pod of a certain
microservice is created, the load balancer will
automatically detect it and will start forwarding requests
once it becomes available. This feature, combined with the
stateless nature of all microservices, allows vacCC
microservices to scale horizontally and to perform zero-
downtime updates.

The following sections explain with a greater detail the
implementation of the front end, validation & persistence,
exporter, and synchronizer microservices.

FRONT END
The front end microservice provides the user interface of

the application. It allows users to be abstracted from the
complexity of vacDB, enabling them to modify vacuum
machine parameters (e.g. equipment and their attributes,
sectors, archiving, data sharing, etc.) that are required for
the export of the SCADA and PLC configuration for the
control system. The application is built as a single page
application, implemented using the React Framework [8].
The graphical styling is provided by the Ant Design
framework [9], which includes pre-made enterprise-class
UI design components that can be added to the application
with minimal configuration, enabling significant time-
savings during development, while ensuring a consistent
look and feel of the application.

Figure 4 illustrates the architecture of the front end
application. The application is organized following the
React model, where web elements such as pages and their
elements (buttons, tables, forms, etc.) are hierarchically
organized into components. Components interact with
backend services (validation & persistence, exporter, and
synchronizer microservices) using REST and WebSockets
[10], the latter being used in special cases of long lasting
requests with intermediate steps that need to provide
feedback to the UI. Request data is stored in the application
store, using Redux [11], that components can access
directly.

Figure 4: Architecture of front end application.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA123

MOPHA123
512

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

VALIDATION & PERSISTENCE
The validation & persistence microservice is responsible

for providing the interface between other microservices
and vacDB. It achieves that by exposing RESTful APIs that
allow other microservices to indirectly perform CRUD
operations on the database. It is implemented with Spring
Boot [12], a widely used framework for building web and
enterprise applications, with an extensive user base, a rich
set of features, with a convention-over-configuration
approach that fosters simplicity and standard coding
practises. Prior to any create, update, or delete operation on
vacDB, data validation is performed to ensure that user
intentions will result in a valid configuration, aiming to
reduce the possibility of errors during subsequent vacDB
SCADA and PLC exports. While vacDB itself provides a
form of validation by the usage of constraints on the
database level, this microservice makes use of attribute
boundaries defined in MasterDB (the metadata source of
vacDB) to improve the detection of user input errors.

Architecture
The architecture of the validation & persistence

microservice is composed of 3 layers, as illustrated in Fig-
ure 5 below:

API

Service Layer

Data Access
Objects

Auditing

Security

vacDB

Figure 5: Architecture of validation & persistence
mcroservice.

• API: exposes REST endpoints for other services to
interact with vacDB.

• Service Layer: handles requests from the API layer,
performs data validation, and when necessary,
combines results from multiple Data Access Object
(DAO) operations to serve API requests.

• Data Access Objects: provides objects that allow
direct access to vacDB. This layer is implemented with
Spring Data and Hibernate.

• Auditing: records modifications in the configuration
of the vacuum control system.

• Security: provides authentication and authorization
services for the entire application, ensuring that only
users with the required priviledges are able to perform
database operations.

Security
For user authentication and authorization, the Spring

Security module is used and customized to obtain user
authentication from CERN’s active directory database.
Upon a successful authentication, a JSON Web Token
(JWT) [13] is issued to the client application. On every
request, the client sends back the token, which is decoded,
analysed, and matched against current authorization
permissions in vacDB: this allows the microservice to
confirm the identity of the client without the need of
sharing credentials on every request. A great advantage of
JWT is its stateless nature. With its usage, no sessions are
maintained between the microservice and its clients,
enabling any Pod to serve a particular request.
Authorization for a particular operation (create, update,
delete) on a specific entity (equipment, equipment
attributes, sectors, etc.) is configured to use method-level
security. DAO persistence methods are annotated with the
role required to execute the method operation and matched
against the requestor’s granted roles.

Data Auditing
The validation & persistence microservice maintains

audit logs for every change made in the configuration of
the vacuum control system. Every time a configuration
parameter changes, on any entity (e.g. equipment,
equipment attributes, sectors, etc.), a log is added to an
audit table containing a description of what changed (e.g.
“timeout value changed from 10s to 30s”), when it was
changed, and which user performed the change. Given that
this functionality was common to all DAO objects, it was
implemented using Spring’s AOP (Aspect Oriented
Programming) paradigm [14]. Each create, update, or
delete operation in any DAO object is captured by an AOP
advice (which is essentially a trigger function) that
compares the current version of the object to be modified
to its future version, and stores a change log result in the
audit table. AOP allows the DAO classes to be completely
unaware of the data auditing mechanism.

vacDB
In order to ensure that the configuration of the vacuum

control system is always possible during CERN’s Long
Shutdown 2, where the configuration of the control system
is changing on a daily basis, one of the project
requirements was to make vacCC compatible with the
database used by the vacDB-Editor. This provides users
with the possibility of using the vacDB-Editor in case of
problems in the new application, especially important
during the validation stage of the application. The easiest
approach for this problem was to make both applications
share vacDB, avoiding the need of creating custom
software to keep vacDB and a new database consistent.

As illustrated in Figure 6, vacDB has 2 types of
databases.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA123

Software Technology Evolution
MOPHA123

513

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Master DB

LHC DB SPS DB CPS DB

Metadata

Machine Instances

Figure 6: High level overview of database interactions.

Master Database The Master DB is a metadata database
that defines information common to all accelerators.
Examples of metadata found in Master DB are the
attributes that define each control equipment type, default
values for attributes, datapoint definitions, and the types of
data for each datapoint element (uint, float, etc.). A single
instance of Master DB is shared amongst all Machine
databases.

Machine Databases Machine databases contain data
concerning a particular vacuum installation (LHC, SPS and
ComplexPS). These databases share definitions from the
Master DB in read-only mode. In Machine databases, we
find definitions of vacuum sectors, equipment and their
attributes, archiving, alarm settings, and all other data
needed to generate all of the export files required for the
configuration of the vacuum control system.

Control System Configuration Versioning Machine
databases contain several versions of data for a given
accelerator and, as illustrated in Figure 7, all database
entities point to a version. This feature is necessary to allow
future versions of the control system to be edited without
affecting the current production versions, and also to
maintain history of previous configurations of the control
system.

...

VDB_EQP

VDB_SECTOR

ID
VERSION_ID

Other fields...

VDB_VERSION

ID

Other fields...

Figure 7: Versioning in Machines databases.

When a new database version is required, it is usually
copied from an existing version – typically from the
production version. A new database version ID entry is
created on the versions’ table and all database entities that
point to the source version ID are duplicated with the new
version ID field.

EXPORTER
The Exporter microservice is responsible for generating

the configuration files for both the PLCs and for the
SCADA.

For each PLC, the exporter generates function block
calls for each vacuum device connected to it, along with

device datablocks; these contain all relevant information
that will allow PLCs to connect and interact with device
controllers. Two special datablocks are generated to enable
bilateral communication with the SCADA: the Read
Register, for the SCADA to read from the PLC, and the
Write Register, for the SCADA to send data – commands
or configuration - to the PLC. PLC functions copy data
from device datablocks to the Read and Write registers on
specific memory positions specified in the PLC
configuration files.

For the SCADA, the exporter microservice generates
configuration files with the data that will allow the
configuration of all datapoints for every vacuum device.
Each datapoint will be configured with the archiving
settings defined in vacDB, and each datapoint element that
requires communication with a PLC will be automatically
configured to point to its corresponding memory location,
within the appropriate PLC Read or Write register. In
addition to the configuration required to enable the
communication between SCADA and PLCs described in
the previous paragraphs, other files are generated to
configure the display of equipment in the SCADA
synoptics, alarms, long term archiving, and data sharing
through middleware protocols with other control systems.

SYNCHRONIZER
The Layout DB is a CERN-wide database that models

the architecture of CERN’s accelerators. It contains data
concerning most accelerator subsystems, including RF,
beam instrumentation, magnets, cyogenics, and vacuum.
The purpose of the synchronizer microservice is to
automatically import vacuum data from the Layout DB
into vacDB, ensuring that the official, approved layout of
the vacuum system is reflected in vacDB. Fig. 8 shows the
data-flow between the Layout DB, the synchronizer
microservice, and vacDB.

Master DB

LHC DB SPS DB CPS DB

Layout DB

Synchronizer

Figure 8: VacDB relation with Layout DB.

Through vacCC’s user interface, users can trigger a dif-
ferential analysis between vacDB and the Layout DB. The
differences detected in the analysis are based on the create,
update, and delete operations made on the Layout DB that
are not reflected in the Machine DB, concerning vacuum
sectorizations, and equipment and their attributes (position,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA123

MOPHA123
514

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

type, and hierarchy). The analysis process provides users
with a list of actions that need to be performed on vacDB
to bring it up to date with the Layout DB. Users can use the
synchronizer service to automatically perform the sug-
gested updates.

CI/CD
A continuous integration and continuous delivery

(CI/CD) philosophy is used in all vacCC microservices.
With continuous integration, developers push their code
daily, if not multiple times per day, into the master
repository of each microservice. Code is automatically
compiled, and unit, integration, and linting tests are
performed at each commit. This methodology allows
compilation errors and non-conformities to be detected
early, thus minimizing the risk of faulty code reaching
production and staging environments. Continuous
delivery, on the other hand, is the process of automating
code deployment. By eliminating human intervention in
the deployment, we can guarantee that code is always
released in a standard manner, thus reducing risk and
minimizing deployment times.

push

Build Test Deploy

PROD

DEV

Lint

Figure 9: Continuous integration / continuous Delivery.

As Figure 9 illustrates, every change made to the code
repository passes through a pipeline that will build
(compilation and creation of Docker images [15]), test, and
lint the code. In case of errors, the pipeline will stop and
the developer will be alerted. Commits pushed to the
master branch of the repository that pass the build, test, and
lint stages are automatically deployed to the staging
environment, a replica of production, where developers
can perform additional testing. After validation in the
staging environment, a tag of the master branch is created,
and developers can trigger an automatic deployment to
production.

CONCLUSION
The front end and the validation & persistence

microservices of vacCC are in production since March
2019 and have completely replaced the vacDB-Editor as
the tool for editing the configuration of the control system.
Users have reported a significant increase in productivity
using the new interface, which is especially important
during the Long Shutdown 2 of the LHC, when tens of
thousands of configuration changes are expected.

We are currently in the validation phase of the exporter
microservice and expect to complete the development
stage of the synchronizer miroservice on late 2019, when
the vacDB-Editor will be completely replaced by vacCC.

The adoption of a microservices architecture in vacCC
brought several advantages. It allowed to split a big
problem into smaller, independent, and more easily
manageable pieces of software, enabling developers to
work simultaneously on the different system components.
Future upgrades of vacCC to new technologies can now be
carried on a service by service basis, without the need of a
big team of software developers uniquely dedicated to
upgrading the whole application at once.

The usage of Openshift/Kubernetes to manage our
application containers made our applications self-healing
in case of hardware problems, brought zero-downtime
deployments, and allows for dynamic horizontal scaling to
ensure a consistent performance of the application.

The development of continuous integration and delivery
pipelines, with integration testing and automatic
deployment to staging and production environments,
allowed developers to be more confident on the changes
they make. This is now the standard for all new
applications developed for vacuum controls at CERN.

In summary, we expect these architectural and
technology choices to result in more agility to react to new
user requirements and technological changes, making
software in vacuum controls ready to face the upcoming
years.

REFERENCES
[1] Oracle JDeveloper,

https://www.oracle.com/database/technologies
/developer-tools/jdeveloper.html

[2] Oracle DB 18,

https://docs.oracle.com /en/database/oracle/
oracle-database/18

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis and S.
Tilkov, "Microservices: The Journey So Far and Challenges
Ahead" in IEEE Software, vol. 35, no. 3, pp. 24-35,
May/June 2018.

[4] REST, Fielding, Roy Thomas. Architectural Styles and the
Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, USA, 2000.

[5] Openshift, https://www.openshift.com/

[6] Kubernetes, https://kubernetes.io/

[7] Pod,
https://kubernetes.io/docs/concepts/workloads/
pods/pod/

[8] React Framework, https://reactjs.org/

[9] Ant Design Framework, https://ant.design/

[10] WebSockets. [RFC6455] I. Fette, A. Melnikov, The
Websocket Protocol , December 2011

[11] Redux, https://redux.js.org/

[12] Spring Boot, https://spring.io/projects/spring-
boot

[13] JSON Web Token, https://jwt.io/

[14] Spring AOP, https://docs.spring.io/spring/docs

[15] Docker, https://www.docker.com/

.

.

.

.

.

.

.

.

"
" .

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA123

Software Technology Evolution
MOPHA123

515

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

