
DATA ACQUISITION SYSTEM DEPLOYMENT USING DOCKER
CONTAINERS FOR THE SMuRF PROJECT

J. Vasquez, SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
The SLAC Microresonator Radio Frequency (SMuRF)

system is being developed as a readout system for next
generation Cosmic Microwave Background (CMB)
cameras. It is based on a FPGA board where the real-
time digital processing algorithms are implemented, and
high-level applications running in an industrial PC. The
software for this project is based on C++ and Python and
it is in active development. The software follows the
client-server model where the server implements the low-
level communication with the FGPA while high-level
applications and data processing algorithms run on the
client. SMuRF systems are being deployed in several
institutions and in order to facilitate the management of the
software application releases, dockers containers are
being used. Docker images, for both servers and clients,
contain all the software packages and configurations
needed for their use. The images are tested, tagged, and
published in one place. They can then be deployed in
all other institutions in minutes with no extra
dependencies. This paper describes how the docker
images are designed and build, and how continuous
integration tools are used in their release cycle for this
project.

THE SMURF PROJECT
The next generation of cryogenic CMB (Cosmic

Micro-wave Background) cameras [1] require densely
instru-mented sensor arrays. These arrays have large
number of sensors, in the order of 10,000 to 100,000 per
camera. The readout of this large number of sensors is a
big challenge that requires substantial improvements in
highly-multi-plexed readout techniques.

The SMuRF system is being developed as a readout
sys-tem for this next generation CMB cameras. It aims to
read 4000 microwave channels between 4 and 8 GHz, in a
com-pact form factor. The system reads out changes in
flux in resonators by monitoring the change in
transmitted ampli-tude and frequency of RF tones
produced at each resona-tor’s fundamental frequency.

The SMuRF system is unique in its ability to track each
tone while minimizing the total RF power required to
read out each resonator, thereby significantly reducing the
line-arity requirements of the system.

SLAC COMMON PLATFORM
The SMuRF system is based on the SLAC

Common Platform Hardware, Firmware, and Software.

SLAC Common Platform Hardware
The SLAC Common Platform hardware is based on

the ATCA (Advanced Telecommunication Computing
Archi-tecture) standard.

The carrier card contains the FPGA (Xilinx KU15P Ul-
trascale+) as well as all the digital, management, and power
distribution devices. The analog RF devices are located on
two double-wide AMC (Advanced Mezzanine Cards)
daughter cards. An RTM (Read Transition Module) card
contains slow speed analog devices.

The FPGA has 8x 12.5Gbps uplink and downlink
JESD204b interfaces to each AMC card, SPI buses to the
RTM, as well as a 10Gbps Ethernet link to the ATCA
crate’s backplane.

All these three boards (carrier, AMCs, and RTM) are in-
stalled in one slot of an ATCA crate. The crate provides a
dual-star Ethernet backplane, cooling, power distribution,
and a management network based on IPMI (Intelligent
Platform Management Interface).

Figure 1 shows all the component of the SLAC common
platform hardware.

Figure 1: SLAC common platform hardware. 1) AMC
daughter cards, 2) carrier card, 3) assembly of a carrier card
with AMC daughter cards, 4) ATCA crate, 5) RTM card.

SLAC Common Platform Firmware
The SLAC Common Platform Firmware is a set of

VHDL libraries which contain protocols, device access and
commonly used modules for all applications that use the
SLAC Common Platform hardware.

The SMuRF firmware application uses these set of li-
braries, as well as an application specific digital signal pro-
cessing module. The final application digitizes and pro-
cesses up to 400 channels in a 4 GHz bandwidth.

SLAC Common Platform Software
Rogue [2], a C++ library with Python bindings, is used

as a framework to write the low-level software application
that communicates directly with the FPGA.

SMURF SYSTEM ARCHITECTURE
A SMuRF system is formed by an ATCA crate and an

external industrial PC. The ATCA crate has one or more
carrier cards in it. Each carrier card has his own FPGA,
which run the SMuRF firmware application, a set of AMC
daughter cards and an RTM card. The slot number 1 of the
ATCA crate is reserved for an Ethernet switch card.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA154

Control System Infrastructure
MOPHA154

597

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The software applications are executed in the external
industrial PC, which runs Ubuntu 18.04. The PC has a ded-
icated 10G Ethernet connection to the ATCA Ethernet
switch. The ATCA Ethernet switch has a point-to-point
connection to each carrier card in the crate though its back-
plane network. The PC can then access any card on any slot
at the same time.

Figure 2 shows a block diagram of a SMuRF system.

Figure 2: SMuRF system block diagram.

SOFTWARE ARCHITECTURE
The software application is based on the client-server

model. The server application is based on Rogue, and it is
used for handling the low-level access to the FGPA, and a
first stage processing of the data. The client application is
based on python, and it is used as a high-level interface to
control the SMuRF system as well as to process and ana-
lyzed the data.

The server application is in charge of providing access
to the firmware registers for configuration as well as mon-
itoring of the system status. On the other hand, it also han-
dler the reception of asynchronous streams of data origi-
nated at the FPGA application, which consist on 2240-byte
packets at a 10kHz rate. When the data is received, a first
processing stage happens, which includes down-sampling
and filtering of the raw data.

Rogue provides an implementation of a portable EPICS
[3] CA (Channel Access) [4] server. The SMuRF server ap-
plication uses this EPICS server as a main communication
interface with clients.

The client application, called pysmurf [5], it is a pure
python application. It uses PyEpics [6] to access the server
application’s EPICS server. Pysmurf provides a set of high-
level routines that allow uses to configure and use a
SMuRF system, including data taking and analysis.

Beside the server and client, there are other applications
that are used in an SMuRF system:

ATCA Monitor
This application is based on Rogue, and it is used to

monitor the status of the ATCA crate, and the cards in-
stalled in it via IPMI. This application provides hardware
identification information (like FPGA firmware version,
card serial numbers, crate model, etc.) as well as runtime

debug information (like fan speed, temperature, voltages,
and current levels, etc.).

Timing Master Controller
In some deployments, a timing system is required. For

these cases, an SLAC timing generator is used, which was
previously developed for other applications at SLAC. It is
based on the SLAC Common Platform, and consist of an
ATCA carrier card, with special AMC daughter cards, and
a special firmware application. The card is installed in slot
2 of the ATCA crate and distribute a timing data stream
though the backplane to all the other carrier cards in the
crate.

The software application used to control this system is
an EPICS IOC (Input Output Controller) application devel-
oped at SLAC. This same IOC application is used to con-
trol the timing master in the SMuRF system.

Debug Tools
These tools, developed at SLAC, are used for debugging

purposes. Some tools are C++ applications which com-
municate with the SLAC ATCA carrier’s IPMI controllers
(IPMC) and print out low level diagnostic information
about both the hardware and firmware status.

Another example is a C++ application and a bash script
wrapper used to load new firmware into the SLAC ATCA
carrier’s FPGA.

Finally, we also have EPICS command line client tools
(caget, caput, camonitor).

DOCKER CONTAINERS
A docker container [7] is a unit of software that packages

code and all its dependencies. Therefore, application run-
ning inside a container can be easily and reliably moved to
different computing environments.

A docker container is a running instance of a docker im-
age. A docker image, on the other hand, is a static file
which contains all the needed components to run the appli-
cation.

A docker image can be built and published in a central
location. Then, the image can be pull and run into different
servers, regardless of the underlying infrastructure (operat-
ing system, library versions, tools, etc.). The only require-
ment for the target server is to run the docker engine [8],
which is available for most of the modern operative sys-
tems.

DOCKER CONTAINERS FOR THE
SMURF SYSTEM

The SMuRF project is being developed by several insti-
tutions in the US. Each institution needs to run the SMuRF
software applications. Moreover, the software (as well as
firmware) application themselves are being actively, and
rapidly, developed, so new releases are frequent. In gen-
eral, there is a strong compatibility dependency between
the firmware and software application versions.

Ethernet Switch

Slot 1

Slot 2

Slot 7

…

ATCA crate

Industrial PC

10G Link

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA154

MOPHA154
598

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

All these factors where the main motivation for deciding
to use docker containers as a deployment method for the
SMuRF project.

Each application used in the SMuRF project is deploy as
a container image. The docker image contains the applica-
tion code, binaries, dependencies, as well of any configu-
ration file need by the application.

Containers running in a typical SMuRF system are
showed in Fig. 3 and described below.

Figure 3: SMuRF application running in docker containers.
The “Timing IOC” container is present only in some par-
ticular deployments.

Server Applications
The server docker image contains the server application

and all its dependencies, for example, all the Rogue frame-
work, EPICS libraries, among others.

For the case of the SMuRF server application, which is
tightly dependent of the firmware application version, the
docker image contains the firmware image file as well. The
image contains a startup script which is run by default
when the docker container is runt. This script will automat-
ically check is the firmware version running in the target
FPGA matches the image version it is expected, and if not,
it will load the correct version before starting. This feature
makes very easy for a user to change the application ver-
sion they are running.

For each ATCA carrier in the system, there will be a
server container instance.

Client Application
The client docker image contains pysmurf as well as

some python tools and modules needed for it, for example,
ipython to run the client in an interactive python session,
matplotlib for generating data plots, among others.

For each server container instance, there will be a corre-
sponding pysmurf client container. As the communication
between the client and server is based on a network proto-
col (the EPICS CA protocol), the client can be run in a dif-
ferent PC respect to the server, as long as the network be-
tween the PCs is setup correctly.

ATCA Monitor
The ATCA monitor application is contained in a docker

image, which includes the Rogue framework and its de-
pendencies.

As there is only one ATCA crate in a SMuRF system,
there is only one instance of ATCA monitor.

Debug Tools
The debugging tools are available as a separate docker

image called “utilities”. This container can be manually
started by the user when needed, and there can be multiple
instances running at the same time.

Timing Master Controller
Finally, the timing IOC runs in yet another container. In

this case, as the IOC application was taken as-is from the
SLAC environment (which is based on RHEL6). The
docker image used for it is based on CentOS 6, with the
EPICS base and modules version used at SLAC to replicate
the same environment. This allowed us to use the same ap-
plication without making any modification to the source
code.

ADDITIONAL DOCKER ADVANTAGES
An additional advantage of using docker containers is

that the initial configuration for the server PC is minimal.
It only requires installing the host operating system (which
for the SMuRF system is Ubuntu 18.04, although is really
doesn’t matter), install the docker engine, and configure
the network interfaces.

On the other hand, additional features of the docker en-
gine are used to improve the usability of the SMuRF sys-
tem. For example, the docker compose tool [9] is used to
start several dependent containers with a single command.
For example, when a SMuRF server is started for a partic-
ular ATCA carrier card, a corresponding pysmurf container
is started as well, already configured to point to the correct
server application. Also, dependencies are used to make
sure that the ATCA monitor as well as the Timing IOC
(when used) constrainers are started as soon as the first
server container is started.

Likewise, features like the overlay network model [10],
which allows to create a distribute network among multiple
docker engines running in different PCs, could be used to
run the pysmurf client containers in a different PC respect
to the server application, in a transparent way for the user.

DOCKER CONTAINERS FOR
DEVELOPMENT

The concept of using docker container is very conven-
ient for the release of stable application versions. However,
for the SMuRF project it was required to have a develop-
ment environment as well. Therefore, we decided to use the
same docker container as development environment.

Using docker containers provides a uniform develop-
ment environment, which is also consistent with the final
release environment. Using the same environment for de-
velopment and release, guaranty that all the testing and val-
idation done during the development process are still valid
in the final release version.

SMuRF
server pysmurf ATCA

Monitor Utilities Timing
IOC

SMuRF
server pysmurf

SMuRF
server pysmurf

Docker engine

Host Operating System

Infrastructure

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA154

Control System Infrastructure
MOPHA154

599

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The use of container for development purposes it is
based on the concept of volumes. Using volumes, it is pos-
sible to mount a directory located in the host file system
inside the docker container. This allows the developer to
make persistent changes to the code, while still compiling
it and running it inside the docker container environment.

There are mainly two types of developments done in the
SMuRF project: firmware and software development.

For the case of firmware development, although the
firmware image itself cannot be modified, configuration
files which are required by the firmware application can.
Also, it is possible to test new firmware versions with the
current stable software versions. This is usually the first
step when releasing a new server docker image. During
firmware development, a server container which points to
firmware files located in the host file system it is used.

On the other hand, for the case of software development,
the server software application code lives in the host file
system, and it is mounted inside the container. Then, the
code can be edited, compiled and execute, from within the
docker container itself. Both firmware and software devel-
opment can be done at the same time as well in the same
docker container.

At the end of the development process, all the changes
are pushed to their respective repositories, new tagged ver-
sion are released, and new docker images are generated and
published. Figure 4 shows a block diagram of this devel-
opment cycle.

Figure 4: Software and firmware development cycle using
docker containers.

DOCKER IMAGE LAYERED STRUC-
TURE

As dependencies are common among most of the docker
images used in the SMuRF project, we are using a layered
structure for building then, as described in Fig. 5.

Figure 5: Docker image layered structure. Square boxes
represent docker images, and the arrows show their de-
pendencies. Circular boxes represent docker containers;
each one is an instance of the image indicated by the dotted
arrow.

First, a “base” image is built. It uses ubuntu:18.04 as its
base image, and add common system packages and tools,
for example, ipmi tools, python3, EPICS base, pyepics,
among others. The utility container is a running instance of
this image.

Secondly, a “rogue” image is built, using the “base” im-
age as its base, and adding the Rogue framework and its
dependencies. Likewise, the “pysmurf” image is built from
the same “base” image adding pysmurf and its dependen-
cies. The pysmurf client container is a running instance of
this “pysmurf” image.

From the “rogue” image, docker images for the applica-
tions that use Rogue are created using it as its base image:
the “ATCA monitor” image which includes the ATCA
monitor application and its dependencies, and the “SMuRF
sever base” image which includes the SMuRF server ap-
plication and its dependencies, but excluding the firmware
related files. The ATCA monitor container is a running in-
stance of the “ATCA monitor” image. On the other hand,
as this “SMuRF sever base” image does not contain firm-
ware related files, its instance container is used for firm-
ware and software developments.

Finally, the image “SMuRF server” is built using the
“SMuRF server base” image as a base and adding the firm-
ware related files. The server containers are running in-
stances of this image.

For the case of the timing master application, it is based
on a completely different operating system and packets.
So, it is a stand-alone image which uses centos:6.10 as a

Server container
(sw devel mode)

Software
repository

(host filesystem)

mounted
volume

Firmware related
files

(host filesystem)

mounted
volume

GitHub
repository

Changes back
to repository

GitHub
repository

Changes back
to repository

Server container
(tag release)

tagged versiontagged version

base

rogue

SMuRF server
baseATCA monitor

SMuRF server

pysmurf

Utilities

Server

pysmurf

ATCA
monitor

Server
(fw /sw

dev)

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA154

MOPHA154
600

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

base image, adding SLAC specific packages and EPICS
modules.

DOCKER IMAGE RELEASE CYCLE
The code for each application is hosted in GitHub repos-

itories [11]. Travis [12], which is a Continuous Integration
(CI) tool, it is used to automatically build docker image
every time a tagged version is released.

Every time a tag is push to one of the repositories, a
Travis build is triggered. When this happens, a user-de-
fined process runs in the Travis building servers; this pro-
cess is setup to build the docker image and push it to the
Dockerhub public repository [13]. Once there, they can be
pull to any of the SMuRF servers.

Figure 6 shows a diagram of this release cycle process.
The development workstation can be the SMuRF server PC
itself when access to the hardware is required for the de-
velopment process. The development process follows the
diagram showed in Fig 4.

Figure 6: Docker image release cycle.

CONCLUSIONS
The SMuRF system aims to be the readout system for

the next generation CMB cameras. It is a project currently
being developed in several institutions across the US. Soft-
ware and firmware applications are in rapid development
and evolution, however they are also tools needed for other
type of development, like hardware, sensors, high level ap-
plications, among others.

Docker containers are used as a deployment method for
these applications. The use of container facilitates both the
release of new version from part of the developers as well

as the deployment of new versions from part of the user.
Likewise, docker containers are also used for development
purposes. They provide a uniform development environ-
ment, which matches exactly with the final release envi-
ronment.

In a SMuRF system, each application runs in independ-
ent docker container. The docker engine provides tools,
like the docker compose, which are used to facilitates the
startup process of a complete system with dependencies
between applications.

The use of container has showed a lot of benefits in a
complex, dynamic, and largely distributed project as the
case of the SMuRF project. Integration with modern CI
tools has made the release process automatic for the devel-
oper. Also, once a docker image is available it can be easily
pull to any server and run in a deterministic and relievable
way by any user.

REFERENCES
[1] arXiv:1809.03689 [astro-ph.IM]

[2] Rogue, https://github.com/slaclab/rogue

[3] EPICS, https://epics-controls.org

[4] EPICS Channel Access,
 https://epics-controls.org/resources-and-
support/documents/ca

[5] pysmuf, https://github.com/slaclab/pysmurf

[6] PyEpics,
https://cars9.uchicago.edu/software/py-
thon/pyepics3

[7] Docker containers,
https://www.docker.com/resources/what-con-
tainer

[8] Docker engine, https://docs.docker.com/engine

[9] Docker compose, https://docs.docker.com/compose

[10] Docker overlay networks,
https://docs.docker.com/network/overlay

[11] GitHub, https://github.com

[12] Travis, https://travis-ci.com

[13] Dockerhub, https://hub.docker.com

GitHub
repository

Travis servers

Build process Dockerhub
repository

tag

Developer
workstation

trigger image

SMuRF
ServersSMuRF

ServersSMuRF
ServersSMuRF

Servers

pull

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA154

Control System Infrastructure
MOPHA154

601

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

