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Abstract

The increasing data throughput of modern detectors is

a growing challenge for back-end data acquisition systems.

OdinData provides a scalable framework for data acquisi-

tion used by multiple beamlines at Diamond Light Source

(DLS). While it can be implemented standalone, OdinCon-

trol is used to provide a convenient interface to OdinData.

Eiger detectors at DLS were initially integrated into the Odin

framework specifically for the data acquisition capability,

but the addition of detector control provides a more coher-

ent and easily deployable system. OdinControl provides a

generic HTTP API as a single point of control for various

devices and applications. Adapters can abstract the low-level

control of a detector into a consistent API, making it easier

for high-level applications to support different types of de-

tector. This paper sets out the design and development of

Odin as a control system agnostic interface to integrate Eiger

detectors into EPICS beamline control systems at DLS, as

well as the current status of operation.

INTRODUCTION

In an effort to stay on the forefront of scientific research in

their respective fields, many beamlines at DLS have chosen

to integrate Eiger detectors. Eiger detectors are very exten-

sible, exemplified by the different use cases of the various

deployments. Some beamlines require the maximum frame

rate possible, while others run at much lower rates of less

than 10 Hz and simply benefit from the quality of the data

produced. With these varied use cases, a dynamic control

and data acquisition framework is required to cope with large

data output in some cases, while keeping more basic deploy-

ments as simple as possible. The system should only be as

complex as is necessary to achieve the given requirements

of the beamline.

Effective integration of Eiger detectors into control sys-

tems at DLS is enabling beamlines to provide world-leading

research opportunities in various science cases and will also

provide the scope for experiments that were not feasible

before [1].

Eiger Detectors at Diamond Light Source

Eiger detectors have a photon count rate of

5 × 108 s−1mm−2, a pixel size of 75 µm and a read

out time of 3 µs, which, amongst many other cutting-edge

features, has led to quick uptake on beamlines at DLS.

The Eiger comes in a variety of sizes suited to different

applications, of which DLS currently makes use of

the Eiger2 XE 16M, Eiger1 X and Eiger2 X 4M and

Eiger1 X 500K models [2]. Eiger detectors have become

commonplace on beamlines at DLS in the last 18 months

and more are scheduled to be commissioned in the near

future. This presents many challenges, not least the file

system load of running multiple instances at the full data

rate simultaneously and in some cases with minimal down

time between acquisitions. It also presents a challenge in

continually commissioning control and data acquisition

frameworks for detectors as they arrive at various beamlines,

as well as keeping them up to date.

Having to support various detector models might com-

plicate the software required to drive them, due to different

demands. Presenting the data rate of different models of

Eiger is not trivial, as it is obfuscated by variable bit depths,

sustained/burst thresholds and compression ratio depending

on signal strength. However, broadly speaking, the max-

imum data rate for all models is approximately the same

and in any case primarily limited by the 40 Gb network

link. The choice of model is effectively a decision balanc-

ing time-resolution against the collecting area. This makes

the software design decisions somewhat simpler; because

different models have roughly equivalent performance re-

quirements, the scale of the system to be deployed is mainly

defined by the use case of the beamline.

X-ray Imaging and Coherence beamline I13 employs an

Eiger1 X 500K to make efficient use of the high coherent

flux available at the sample. The major use case is for ultra-

fast diffraction imaging, primarily ptychography [3]. This is

a method of collecting a series of diffraction patterns from

a sample, in a grid with overlapping illumination regions,

and processing the datasets to create an image. Ptychog-

raphy allows higher spatial resolution images than using

conventional lens imaging. The combination of high flux

and the inherent noise resilience of the technique enables

scans with exposures of the order of 100 µs, which makes

scans at 10 kHz feasible. This pushes the boundaries of

trajectory scanning and data acquisition technologies.

Macromolecular Crystallography (MX) beamlines, such

as Microfocus MX beamline I04, make the greatest use of

Eiger detectors at DLS. The large collection area of the 16M

and 4M models is ideal for collecting crystal diffraction data,

while the small pixel size enables better sampling of diffrac-

tion spot profiles and improved signal-to-noise from smaller

diffraction spots. The high frame rates are a particular as-

set for MX beamlines that invest in automation and high

throughput of samples, due to reduced acquisitions times.

For these beamlines, Eiger is the natural upgrade from the

Pilatus detectors that have been depended on for many years.
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Odin Framework

Odin [4] is a scalable and modular control and data ac-

quisition framework for detectors. It is a combination of a

high-throughput C++ data acquisition stack OdinData (OD)

with a Python control server OdinControl (OC), providing

a balance of performance and convenience. It is primarily

designed for the modular, parallel detector systems, such

as Excalibur [5] [6] and Percival [7]. This led naturally to

the Odin framework being modular in its own design to

enable it to be scalable, for performance and to support par-

allel detectors, while providing a single point of control for

integration.

INITIAL EIGER INTEGRATION

An internal HDF5 file writer is included on the provided

Eiger Detector Control Unit (DCU), allowing files to be

copied off via HTTP, but this sacrifices data throughput for

convenience, so it is not used at DLS. Instead, the ZeroMQ

(ZMQ) [8] data stream provided by the Dectris SIMPLON

API [9] is used. This operation mode compresses the data

frames from the detector and wraps the data blob with some

header information, exposing a data stream that then needs

to be gathered and processed by a listening application. The

data throughput on this stream is only limited by the 40 Gbit

ethernet link, assuming detector performance and compres-

sion can exhaust it. This is a substantial improvement on

what is possible with the internal file writer.

When the first Eiger was integrated at DLS, ADEiger [10]

was used to provide the control API alongside an OdinData

acquisition pipeline. OdinData had already been developed,

for use with other high throughput detectors Excalibur and

Percival, and the plugin-based design makes it simple to in-

tegrate new detectors into the framework, so it was decided

to use it with Eiger. This worked well and has been suc-

cessful on multiple beamlines. It is also, however, a bulky

and complicated system to deploy, use and maintain. The

main complication is the requirement of two independent

areaDetector [11] drivers, ADEiger for detector control and

ADOdin for the control of the data acquisition stack. This

meant that many parameters have to be synchronised be-

tween the two systems. It is too easy for users to accidentally

configure the two separate applications in inconsistent ways,

which could lead to confusing errors and difficult debug-

ging sessions. To simplify things, the new system described

here removes ADEiger and replaces it with OdinControl,

integrating Eiger fully into the Odin framework.

The network architecture of Eiger systems used at DLS

is shown in Fig. 1. The Odin processes are all run on the

Eiger Processing Unit (EPU) in a compute room, while the

ADOdin IOC is run on a beamline server.

EIGER ODIN ARCHITECTURE

Functionality in an OC server is primarily implemented

by loading a set of Adapters, providing a coherent interface

to many individual devices and applications. The server ex-

poses a set of HTTP URIs corresponding to each Adapter’s

Figure 1: Network architecture of an Eiger system at DLS.

DCU: Detector Control Unit provided by Dectris. EPU:

DLS Eiger Processing Unit to run Odin processes.

parameters and methods, resulting in a hierarchical parame-

ter tree representing the overall system. The OC API repre-

sents multiple instances of an object by presenting parame-

ters as arrays. This allows high level control to request the

value of a parameter for each instance in a single request,

as well as to send a single value to all instances. It is also

possible to index into a parameter array to interact with in-

dividual instances where the values do need to be different.

OC parameters are intended to be self-describing through

the provision of meta data, such as type, limits, units and

description. This makes the server, and therefore the applica-

tions underlying the Adapters, introspectable by higher level

control applications, aiding integration with a wider control

system. Conveniently, the meta data in an OC parameter

maps intuitively to the SIMPLON API [9] provided by the

Eiger, which makes the Eiger Adapter API look very similar

to talking directly to the detector.

The architecture of OD is also parallel in its design, but the

logic is reversed; there are multiple data acquisition nodes

operating in parallel to serve the same data stream, or set of

data streams. The core logic of a given node is determined

by its perspective of being one of many, which makes the

software inherently scalable. The primary intent behind OD

is high throughput. To achieve this it is stripped back and

simple. Its function is limited both by design and philosophy

to follow this principle. Only the bare minimum processing

should be carried out in serial with the file writing, so that

there is a minimal path to disk. Only processing that is re-

quired to make the images useful is allowed. Use cases that

generate extra data from the raw images or calculate addi-

tional statistics should implement the logic in a processing

pipeline on a separate machine or cluster via SWMR [12]

live monitoring. Any processing that is required during an

acquisition, such as a live view of the data, should be done

in a parallel plugin chain. An exception to this might be data

reduction processes, which would trade some processing

load for reduced file writing load, as well as smaller files.

As the data acquisition pipeline is usually I/O bound, this

could serve to increase the overall throughput.

The application of this philosophy to the HDF5 file writer

is key to the high throughput of the system. The configura-

tion is restricted to the essentials: datatype, compression and

chunking. Image datasets are 3D and scalar datasets are 1D;

no further dimensionality is supported. Additional datasets

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THBPP05

Experiment Control
THBPP05

1591

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 2: Architecture of a single OdinData node of an Eiger Odin system.

Figure 3: OdinControl Server architecture for a four-node Eiger Odin system.
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are only included in the file if they are required during an

acquisition, such as unique identifier (UID) and image sum

datasets used for SWMR live monitoring and processing.

Anything else is published on a ZMQ socket and written

to a separate file if required. This reduces the demand on

the main file writer by not having to handle datasets that

are not time critical or otherwise not required until after the

acquisition is complete.

OC supports control of an OD stack of any size with only

minor configuration changes and superficial, but clear, differ-

ences in the user facing API. The primary desire of designing

OD to be scalable is to allow performance increases if a bot-

tleneck is reached, without overhauling the entire system.

However, a secondary benefit is that it also allows systems

to be only as complex as is necessary for a beamlines’ re-

quirements. It also has the effect that, for the most part, the

system looks the same whether it has one OD node or eight.

Data Flow

The problem to overcome in integrating Eiger is that the

data stream is not parallel, which OD depends upon. There is

a single ZMQ stream from the detector. A single file writer

is not sufficient to keep up with the data rate, so we use the

EigerFan application to parallelise the Eiger data stream onto

a configured number of consumers, to share the workload

between multiple OD nodes. Messages are gathered from

the detector and forwarded on to the correct consumer in a

round-robin fashion. The number of consecutive frames to

send to a given consumer, the block size, is configurable.

OD consists of two separate applications: the FrameRe-

ceiver (FR), for gathering data from the detector into shared

memory as fast as possible, and the FrameProcessor (FP),

for labour intensive processing and writing to an HDF5 file.

The EigerDecoderPlugin in the FR gathers a set of global

header messages for an acquisition and then a set of mes-

sages per image. Parts of the global header are passed on

through shared memory, such as the flat field and pixel mask

datasets. The data blob is extracted from the image mes-

sage parts and placed in shared memory with a simplified

header containing the datatype, compression and a frame

identifier. For each shared memory buffer, a Ready message

with a buffer index is passed to the FP, which then wraps

the data in shared memory and passes it through its plugin

chain. When the EigerProcessPlugin receives the pointer,

the pre-compressed image blob is passed on to be written to

disk by the FileWriterPlugin, while the details of the global

header messages are published on the meta channel. For

hardware-triggered scanning and mapping applications [13],

the compressed size is set as a parameter to be written to the

data file, in the absence of a sum dataset, and a UID dataset

is created by the Parameter plugin, based on frame number.

This provides a visual display of the overall intensity of the

image for each point of a scan, as it progresses. When the

pointer is released by the final FP plugin, a Release message

is sent back to the the FR to allow it to re-use the buffer.

The FileWriterPlugin is detector agnostic, so must be con-

figured to correctly handle Eiger data. It will tag the dataset

with the compression mode and write the data using Direct

Chunk Write [12], bypassing the HDF5 processing pipline.

The Eiger use case would be greatly limited without this,

as it allows writing the pre-compressed data from the ZMQ

data stream directly to file. Like the EigerProcessPlugin,

it will also publish some meta data, such as the time and

order the frames were written in. This is very useful for

visualising and debugging performance of the file writing.

Any data published on the meta channel can be captured by

the MetaListener, a separate Python-based ZMQ stream lis-

tener and HDF5 file writer. The architecture of a single OD

node for an Eiger system is shown in Fig. 2 and a schematic

of the OdinServer and overall system for a four-node Eiger

Odin system is shown in Fig. 3. Importantly, throughout this

process, there are no copies made of the data. The data blob

from the ZMQ data stream is stored in shared memory by

the FR and then the pointer given to the FP is passed directly

to the HDF5 write call. This is vital to the throughput of the

data acquisition pipeline.

At the end of an acquisition there will be one data file

for each node, though this is configurable, plus a meta file.

If the dataset needs to read by a simple application, a new

HDF5 file can be created with a Virtual Dataset (VDS) [12]

to interleave the frames from each raw file, alongside links

to each of the datasets in the meta file. The layout of the

interleaved VDS is shown in Fig. 4. Another VDS can be

created to superimpose the dimensionality of a scan onto the

flat datasets. An application could also be given a definition

of the scan and the file layout in order to intelligently read

frames from the raw datasets in the correct order using any

slicing that is required.

Figure 4: Virtual Dataset layout for Eiger data [14].
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Figure 5: ADOdin EDM screen for Eiger detector control.

Figure 6: ADOdin EDM screen for acquisition control.

Figure 7: ADOdin EDM screen for OdinData status.
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DEPLOYMENT

This modular framework brings some complication in

deployment. The four-node Eiger Odin system includes 12

separate processes in total, all of which need to be configured

correctly to fit into the overall system. A Python library

has been written to generate all of the start up scripts and

configuration files for the required applications. This makes

it much easier to deploy and update an Odin system without

knowing the detail of how everything works. All that is

required to configure a full system is to define the number of

OdinData processes, the detector type and IP address, and

the servers that will host the processes. The applications will

be correctly configured to intercommunicate and operate as

a single entity.

All that is required at this point is to integrate the API

provided by the OC server into a wider control system. This

can be as simple as a web page or a command line script

exposing the HTTP endpoints. At DLS we use ADOdin to

integrate Odin into our EPICS control system. This provides

a familiar areaDetector interface to users and controls en-

gineers and makes integration easier and more efficient. It

also builds upon a robust and convenient driver architecture

to keeps the code base small and maintainable. The major-

ity of ADOdin is implemented by mapping EPICS process

variables to HTTP endpoints, while letting the OC server

handle the complex logic and coordination of the various

applications. Integration with areaDetector also allows the

driver to present a reduced live view of the data as NDArrays.

This can then be passed through any areaDetector plugin

and onto a viewing application, such as imagej via pvAc-

cess [15]. Fig. 5 shows the main ADOdin EDM screen for

controlling Eiger and the EigerFan.

ADOdin hides the underlying complexity of the OdinData

stack, presenting a simple API, as shown in Fig. 6 and Fig.

7. The only required configuration for an acquisition is a

directory, file name and number of frames, regardless of how

many OdinData nodes there are. Some of these parameters

will trigger underlying logic when set to uniquely configure

each node. For example setting the frame count will send

the same value to all nodes and the individual process will

calculate the number of frames it expects, based on its rank.

PERFORMANCE

Performance profiling up to this point has only been car-

ried to ensure viability for specific use cases at DLS. The

highest data output is with the Eiger 2 XE 16M at 560Hz.

Tests were carried out with this system on a beamline while

attempting to maximise the signal on the detector, which

produced frames of approximately 2 MB after compression.

The four-node OD deployment was able to cope with the

throughput in this case. All Eiger systems that expect full

data rates use the same configuration. More basic tests show

the throughput of a single node in isolation is approximately

15 Gb/s and that there is a diminishing return in adding more

processes to one server, most likely due to the I/O to the file

system. At a certain point it is much more effective to split

the OD processes across multiple machines. This will be

essential for future faster detector systems.

STATUS AND FUTURE

OD is now running in production with Eigers on five

beamlines at DLS. After a successful test deployment of

OC Eiger support on a beamline, we are confident in rolling

it out to all existing and future Eiger systems to provide a

simpler and more coherent interface to Eiger detectors. This

system is something that can be deployed outside of DLS

as a solution to integrate Eiger detectors into any control

system.

A Docker [16] container has been produced to, firstly,

install all dependencies required for Odin to run on any

compatible system and then secondly to deploy specific Eiger

Odin systems. The deployment consists of a set of Docker

containers to run each specific application instance. This

should also serve as an instruction set to build and configure

a more tailored deployment from source. An Eiger simulator

for the control API and data stream has been produced for

testing during development. This will be deployed with

the Docker container to demonstrate the system without the

requirement of a real detector. A web GUI is provided to

present some of the most fundamental control and status

parameters of the system, which will enable manual data

collection to be carried out. We are investigating the usage of

Docker containers to deploy Odin on beamlines at DLS with

orchestration such as Kubernetes [17] to further simplify

deployment for beamline controls engineers.

There is growing interest in implementing a Kafka [18]

cluster to integrate with OD. Data could be consumed from

the Kafka cluster by processing pipelines, instead of effec-

tively transferring the data via the file system, which would

reduce file system load and improve latency of processing

pipelines. This would enable better real-time feedback to the

user. An OD Kafka plugin has been developed and tested

on Eiger systems and further work is required to integrate

this into existing processing applications.

CONCLUSION

Odin has become an integral part of beamline control

systems at DLS. OdinData has been well proven as a robust

and fast data acquisition framework for use with Eiger de-

tectors, but the use of a separate ADEiger driver for control

was bulky and error prone. To simplify the architecture, an

OdinControl adapter has been written for Eiger producing a

full software framework for controlling and acquiring data,

which could be integrated into any control system using the

HTTP API. This will be make it much easier to deploy and

maintain Odin systems on beamlines and also improve the

future development of the system. The Odin framework is

open source and available on GitHub [4] [19].
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