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Abstract 
At the Centre for Proton Therapy of the Paul Scherrer 

Institute (PSI) about 450 cancer patients are treated yearly 
using accelerated protons in three treatment areas. The fa-
cility is active since 1984 and for each patient we keep de-
tailed log files containing machine measurements during 
each fraction of the treatment, which we analyse daily to 
guarantee dose and position values within the prescribed 
tolerances. Furthermore, each control and safety system 
generates textual log files as well as periodic measure-
ments such as pressure, temperature, beam intensity, mag-
netic fields or reaction time of components. This adds up 
currently to approximately 5 GB per day. Downtime of the 
facility is both inconvenient for patients and staff, as well 
as financially relevant. This article describes how we have 
extended our data analysis strategies using machine ar-
chived parameters and online measurements to understand 
interdependencies, to perform preventive maintenance of 
ageing components and to optimize processes. We have 
chosen Python to interface, structure and analyse the dif-
ferent data sources in a standardized manner. The online 
channels have been accessed via an EPICS archiver.  

INTRODUCTION 
The Paul Scherrer Institute (PSI) in Switzerland started 

treating tumours using accelerated protons in 1984. Since 
then more than 9000 cancer patients have been treated at 
its fixed beamline for eye irradiation and three gantries. 

The facility continuously produces large amounts of data 
originating from the particle accelerator, beamlines and 
control and safety systems needed for the dose delivery. 
Part of this data, especially everything directly related to 
patient irradiation, gets stored for online and future analy-
sis. Patient treatment log files get analysed daily through-
out the treatment duration to guarantee the delivery stand-
ards. Some sensor data is used for forensics after particular 
machine malfunctions, and other sources are used as surro-
gates to estimate when a part needs to be replaced due to 
ageing or wear. 

Downtime due to unexpected failure of components is 
both inconvenient for patients and personnel, and expen-
sive in financial terms due to unused clinical resources and 
paused revenue. With the goal in mind to reduce downtime 
and to improve preventive maintenance we started a pilot 
to introduce structured big data analysis techniques in our 
facility using the extensive available data. In the present 
paper we will describe the data available, our steps to clas-
sify it and process it as well as the first promising results. 

DATA SOURCES 
PROSCAN, the facility dedicated to treating patients at 

PSI, is a complex set of interconnected but largely inde-
pendent and heterogeneous subsystems. There are several 
control, safety and monitoring systems generating status 
data at different rates and formats. The first part of this 
work was to list and attempt to classify all the available 
data for its future analysis. 

Machine Data 
A superconducting cyclotron provides protons to the 

treatment areas by means of 5 beam lines. These contain 
17 steering magnets, 45 quadrupoles, 8 deflecting dipoles, 
47 beam monitors, 14 beam blockers and several other aux-
iliary elements each with its set point and actual status val-
ues. Most of these values are permanently available, some 
on request as they are beam-disrupting. 

The usage and sharing of the beam across the different 
areas also gets monitored and archived. It is always possi-
ble to know at any given time which area had mastership, 
that is, control and access to the beam, and at which energy 
and intensity. This can be useful for forensics, but also for 
statistics, see Figure 1, and to identify potential inefficien-
cies. 

Figure 1: Histogram of mastership duration per area in 
2019. 

Additionally each treatment area stores dosimetry-rele-
vant parameters not limited to but including humidity, pres-
sure and temperature at different locations. The control 
systems also store technical values from electronics and 
sensors, namely supply voltage, power consumption or in-
ternal temperature. 
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Patient Data 
The treatment of a patient is typically divided in frac-

tions, out of which there are between 4 and 37, depending 
on the indication. Each fraction includes a prescribed dose 
distributed into one or more fields to be sequentially ap-
plied. At PSI gantries we use Proton Beam Scanning (PBS) 
technology, a superposition of single pencil beams that 
added together cover the full volume of the tumour achiev-
ing a high conformity [1]. Each beam application is divided 
into spots, a predefined number of protons at a given en-
ergy and location. The Therapy Control System (TCS) re-
quests the right machine setting for each spot and verifies 
its correctness in a short dead time between spots. A typical 
field in our Gantry 2 contains 20’000 spots, each of which 
is individually logged. The logs contain information of po-
sition and dose, as well as the settings of all the involved 
beamline elements. These files are stored in clear text and 
in a Structured Query Language (SQL) database and kept 
indefinitely. 

Safety Systems 
The safety of the dose delivery in each treatment area is 

guaranteed by a Patient Safety System (PaSS) [2]. This is 
a Field Programmable Gate Array (FPGA) based interlock 
system in place to monitor the facility and to interrupt the 
treatment whenever any subsystem detects a hazardous 
condition. There are three levels of interlock severity, 
which deflects the beam, pauses the acceleration of protons 
by reducing the High Frequency (HF) power or switches 
off the accelerator respectively by shutting the HF. 

It is connected to beam monitors, beam blockers, the 
control system and other monitoring devices, whose status 
samples at 1 MHz. Several supervision functions were built 
in, including measuring the reaction times of all connected 
elements. The status of all signals and interlock outputs, as 
well as all measurements are published via EPICS [3] with 
0.1 to 1 s resolution and archived for later use. Additionally 
after each interlock event, a log file with the sequence of 
events with a 1 µs time resolution is generated in text for-
mat. 

Interlocks are, together with device failures, the main 
sources of downtime in the facility. It is for this reason that 
understanding them, and eventually being able to predict 
them is of the upmost importance. 

METHODS 
Before the start of this project some sort of data analysis 

was already performed in individual systems for different 
purposes. It is the case of the patient Quality Assurance 
(QA) log file analysis [4]. Other analyses were made only 
for research projects or as part of a forensic investigation 
after an incident. 

At first we analysed the facility topology and talked to 
the different experts to obtain a list of all the available data, 
its format and how to access it. We calculated that 5 GB of 
data are generated on an average treatment day. This gets 
down-sampled for daily storage, and again yearly, to save 
space. 

Unified Access Architecture 
We chose Python as the programming language to pro-

cess the data as it provides excellent analysis and visuali-
zation tools, namely Pandas [5] and Matplotlib [6]. The 
goal was to provide a unified access tool to all the hetero-
geneous data sources. 

PSI has a centralized network time protocol (NTP) 
server to which most systems are synchronized. For the 
data sources that are not synchronized we attempted to find 
the difference to the central NTP server and apply it as an 
offset to the corresponding data. For the missing data 
points we chose either interpolation or extrapolation of the 
last known value, depending on its nature. 

Some data sources have a continuous nature, like tem-
perature or beam intensity. Others however are discrete, 
such as the interlock events. In order to be able to look for 
correlations between them we created variables such as 

. In Figure 2 we demonstrate the unified access to 
related variables of different formats and sources: The in-
stantaneous current out of the accelerator from the machine 
archiver and the interlock events due to overcurrent de-
tected, from the safety system data. 

 

 
Figure 2 Display of accelerator output current and the in-
terlocks that are produced when it is too high for Gantry 2. 

EPICS and Archiver 
Most of the hundreds of magnets, monitors, collimators 

and diverse sensors distributed along the accelerator, 
beamlines and gantries publish regularly their status via 
EPICS. This data is online available at different data rates 
and can be used for online visualization, accessible to the 
whole laboratory. In addition to this there are a short term 
archiver which keeps the full resolution of data for one year 
and a long term archiver with down sampled data. 

The archived data can be accessed using a python API 
and it is time stamped with a unified time reference. 

Patient Data Analysis 
All machine log files from fields that are applied to pa-

tients in G2 and O2 are analysed daily using MatlabTM soft-
ware tools that were developed in-house. Parameters such 
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as dose and spot-position deviations, and number of inter-
ruptions due to interlocks, among others, are evaluated. A 
report detailing the results is generated per patient per day, 
and in addition, summary spreadsheet files are appended 
with values of particular interest. 

We have developed a python interface to access these 
files and to make its content available in a Pandas data-
frame format, with time stamps synchronized to the rest of 
the facility data. This includes the precise status of each 
beam line element at the time any patient was being treated. 
Figure 3 shows the daily average spot position deviation 
for all patients treated in Gantry 2 in the current year, which 
is well below the 0.5 mm allowed tolerance. 

Figure 3: Daily average position residuals ±σ interval over 
a year for both transversal directions. 

RESULTS 
The goal of this project was to be a proof of concept to 

show the benefits of big data analysis in our small size fa-
cility. For this reason we chose a few representative use 
cases to put the first efforts in. 

Usage Overview 
As seen in Figure 4 the distribution and type of interlocks 

is clearly visible from the logs from Gantry 2 safety sys-
tem. Low level interlocks are uniformly distributed along 
the week, while there seems to be an unproportioned num-
ber of high severity interlocks on Thursdays. This is be-
cause of quality assurance tests of the emergency buttons 
are typically scheduled on these days. 

From the mastership allocation we can process and dis-
play area usage overview, as seen in Figure 5. The granu-
larity is configurable according to the needs of the visuali-
zation and could be extended with number of patients 
treated or interruptions due to interlocks. 

Prediction Models for Preventive Maintenance 
AMAKI, the deflecting magnet which switches the beam 

on and off at the output of the cyclotron is a central facility 
element. For this reason its performance is permanently 
monitored using magnetic sensors. If the magnet does not 
switch off in less than 200 µs an interlock is triggered, halt-
ing the acceleration of protons and placing beam blockers 

in the beam path. The sensors are located inside the accel-
erator’s bunker  and  therefore  suffer continuous radiation 

Figure 4: Distribution of the three levels of interlocks 
per week day in 2019 in Gantry 2. 

Figure 5: Treatment beam sharing time in a week where 
Gantry 2 was used for experiments during the weekend. 

damage which makes them slower, causing false alarm in-
terlocks. Its replacement requires manual intervention of 
experts inside the bunker. 

Changing the sensor when it unexpectedly fails causes a 
downtime of 4 hours, half a treatment day. On the other 
hand replacing the sensor too often leads to unnecessary 
dose to personnel.  

The introduction of the latest PaSS upgrade made avail-
able a precise measurement of the AMAKI switching time, 
which is both published via EPICS and archived. In Figure 
6 one can see a clear pattern of the performance degrada-
tion of the sensor. It is evident that the replacement fre-
quency is sub optimal. 

We created a regression model to estimate the average 
switching time in the future, based on all the measurements 
since the last sensor exchange. To this we can add a margin 
to include the past time variability with 5σ and project 
when it will cross the interlock line (accounting for the 
measurement cable latency). In Figure 7 one can see the 
prediction for the next interlock, and how we can recom-
mend a replacement after 8 weeks instead of the currently 
6 weeks planned. 
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Figure 6: Switching time measurements from AMAKI 
magnetic sensors since data started being recorded. 

 
Figure 7: Linear regression model from AMAKI magnetic 
sensor switching times, projecting the future failing point. 

Finding Interdependencies 
We have started analysing the interdependencies of all 

the available data with some basic correlations. Figure 8 
displays the readings from the slow control system ar-
chived data for temperature sensors distributed along Gan-
try 2. One can see what sensors are close to each other, as 
their temperature is similar and their correlation high. The 
same analysis can be later applied for less evidently related 
variables. 

SUMMARY 
We have described the main different data sources at 

PSI´s Centre for Proton Therapy: Machine status, patient 
logs and from the safety systems. We then presented the 
approach to classify and make all data available for analy-
sis in a unified way and with a common time reference. 
Later we discussed how we started analysing the available 
data and showed the first results, which however reduced 
suggest a great potential for better understanding the facil-
ity, optimizing its usage and planning preventive mainte-
nance to reduce downtime. 

 

 

 
Figure 8: Temperature sensors distributed in Gantry 2 area 
(above) and its cross correlation over a day (below). 

FUTURE WORK  
The presented project was a proof of concept of explor-

atory nature and we plan to further develop the analysis of 
the facility data in two major lines: First the analysis and 
visualization need to be improved with more advanced 
techniques. Secondly we will create prediction models for 
early failure detection and eventually train an artificial in-
telligence expert system to monitor online status variables 
of the facility and suggest small correction interventions. 
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