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Abstract 
The National Ignition Facility (NIF) is the world's larg-

est laser system for Inertial Confinement Fusion (ICF) and 
High Energy Density (HED) experiments. Design of the 
NIF control system started in the 1990s, incorporating es-
tablished hardware and software technologies of that era. 
The architecture of the control system has stood the test of 
time, successfully scaling up to a full 192 laser beam con-
figuration in 2009, and then transitioning to 24x7 opera-
tions and sustaining 400 shots annually since 2016. The 
control system has grown with NIF to add new major ca-
pabilities, such as cryogenic layering, a petawatt-class la-
ser, 3D neutron imaging and others. In parallel, with scal-
ing up and efficiency optimizations, the software had to 
adapt to changes dictated by the fast-paced computer in-
dustry. Some of our originally chosen technologies have 
become obsolete and replaced by new programming lan-
guages, frameworks and paradigms. In this paper, we dis-
cuss how the NIF control system has leveraged the 
strengths of its distributed, crossplatform architecture to 
successfully modernize "in-place" computing platforms 
and programming languages without impacting the de-
manding experiment schedule. 

INTRODUCTION 
Large experimental physics facilities embody significant 

investment of societal resources and they are expected to 
last, gainfully generating scientific knowledge for 20-40 
years. Computer industry moves much faster, periodically 
forcing facilities’ control systems into major moderniza-
tions to address technology obsolescence, cybersecurity 
and paradigm shifts in programming technologies. 

Continuous pursuit of the experimenters’ goals at these 
facilities may also mean that there will never be an ex-
tended downtime for a comprehensive “full rewrite” of the 
control system. The alternative is an incremental “in-
place” upgrade in parallel with scientific operations, 
stretching the modernization over numerous small win-
dows (2-4 hours) in the facility schedule. By overlapping 
with other maintenance activities, the “in-place” approach 
does help to minimize the overall downtime budget. How-
ever, each of these numerous upgrades carries a risk of an 
unexpected behavior change or a system incompatibility. 
While the planned downtime budget can be frugally nego-
tiated, facilities have zero tolerance for unplanned down-
time since it directly impacts the quantity and quality of 
scientific output. 

We explain how we have approached the “in-place” up-
grade by carefully inspecting the “pillars” supporting our 
control system architecture. Some of these pillars had to be 

removed and replaced, while others stayed and served as 
pivots which helped our team to propel NIF Integrated 
Computer Control System (ICCS) towards modern tech-
nologies. 

To address the unplanned downtime risk, we have ex-
panded our automated testing by adding focused verifica-
tions of the fidelity of the software migrations, assuring 
that new behaviors, timings and exceptions match those of 
the legacy software. Finally, we have leveraged the data-
driven aspect of our architecture to develop a fast and reli-
able “conversion-reversion” process which assures that we 
can always undo a migration upgrade and return the facility 
to normal operations in a predictable time.  

EVOLUTION OF ICCS TECHNOLOGIES 
Early Days 
The NIF control system was designed at the end of the 
1990s. Reliability and scalability were the primary con-
cerns for hardware and software architects, which resulted 
in selection of proven, well established technologies with 
solid industry support. For the low-level, hardware-facing 
Front-End-Processors (FEPs) the NIF team selected VME-
bus, Motorola PowerPC diskless crates running VxWorks 
RTOS, Fig.1. 

 
Figure 1: Evolution of ICCS technologies: fading red color 
indicates legacy technologies on their way to obsolescence. 
Deepening green illustrates growth of modern alternatives. 
Solid green highlights enduring pillars of our architecture. 
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Sun SPARC servers and workstations under the Sun So-
laris UNIX OS were selected for supervisory and GUI ap-
plications [1]. 

In the software domain, a similar focus on type safety, 
modularity and scalability has driven commitment to Ob-
ject Oriented Design (OOD), Ada 95 programming lan-
guage and CORBA middleware. To accentuate software re-
use and to support the never-ending expansion and modifi-
cation of the NIF systems, the control system topology and 
configuration are data-driven, defined by structured data-
base entries. Oracle RDBMS was selected as a storage for 
configuration data, persistence and history archive. 

It is worth noting that all software tools and libraries in 
the ICCS 1997 design [1] were proprietary, closed source 
and expensive.  

Java Moves In 
Early in the prototype system development it became 

clear that Ada 95 was lacking a healthy ecosystem. Very 
few libraries were available outside of the core language, 
which was a severe limitation for a universal and integrated 
control system. ICCS needed a clean modern user inter-
face, and Microsoft Windows became the preferable plat-
form for the Control Room consoles due to its ease of use 
and standard office tools. There were no good cross-plat-
form UI toolkits for Ada 95, proprietary or open-source. 
Tellingly, Oracle discontinued its Ada database binding li-
brary.  

At the same time, the quickly rising Java programming 
language was offering consistent cross-platform UIs and 
solid enterprise-level database driver libraries. This is 
when ICCS team leveraged CORBA middleware as a 
cross-language tool, by connecting Java components to 
Ada using open-source JacORB middleware. The NIF con-
trol system became bilingual. 

Soon after, Java became the language of choice for all 
new software development. ICCS software engineers pre-
ferred Java because of its clarity, efficient and free devel-
opment tools and a whole universe of third-party libraries. 
Most of the new hires did not know Ada 95 and they were 
pleased not to learn the niche language. 

FEP Challenge 
By the early 2010s, all ICCS GUIs, and most of the su-

pervisory and shot automation applications were Java. At 
the same time, our Ada 95 development toolchain became 
a real burden: obsolete, poorly supported and expensive li-
censing. Our hardware facing FEP platform of VxWorks 
5.4 and PowerPC was obsolete. Oracle had acquired Sun 
Microsystems, tossing Sun Solaris OS and SPARC archi-
tecture towards obsolescence. 

At this point, it became clear that we must entirely mi-
grate away from Ada 95, VxWorks and Solaris. We already 
knew good alternatives to migrate to: Java, Linux and Intel. 

Our Front-End-Processors (FEPs) became the last bas-
tion of legacy Ada 95/VxWorks/Solaris platform, lagging 
because of the historical and technological reasons: 

• Most of the FEP software was originally developed in 
Ada 95 during early phases of the NIF construction, 
before the ICCS Java stack became available. 

• Controls hardware is attached to these FEPs, so the mi-
gration scope explodes into full replacement of the 
computing platform, OS and specialized drivers. 

• FEPs are directly controlling powerful energies and 
expensive hardware, requiring formal re-verification 
of the machine safety requirements whenever software 
changes. 

• Initially, Java platform was not as predictable for soft 
real time control applications as VxWorks/Ada 95. 
These concerns were addressed by newer JVMs, fast 
multi-core CPUs and garbage collection management. 

• There was a loss of the domain expertise for systems 
designed years ago: many of the software engineers 
and their electrical, optical, mechanical counterparts 
have retired or moved on. 

It is not surprising that the ICCS team was hesitant to 
migrate the FEPs, leaving them until later because of the 
complexity, impact and the risks. To eliminate legacy tech-
nologies from ICCS, we had to simultaneously rewrite FEP 
software in a new language, switch to a new OS, new CPU 
architecture and new drivers. 

While NIF operations were supportive of the long-term 
sustainability goal, our proposal to make such radical 
changes to the core systems came when operations were 
the least willing to introduce any downtimes or risks. 

OPERATIONAL ENVIRONMENT 
Construction of the NIF had concluded in 2009, ten 

years ago, when 24x7 operations began with focus on max-
imizing the scientific output by increasing number of ex-
periments (“shots”), maximizing availability and continu-
ous innovation in laser, target and diagnostic capabilities, 
Fig. 2. 

 
Figure 2: NIF Shot Rate year-to-year. 391 shots are ex-
pected in 2019 [2]. 

The NIF operational schedule is thoroughly managed, 
with experiment plans extending a year into the future and 
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getting highly detailed down to hours and minutes on a 
week timescale. Within this schedule, a limited time is al-
located to the ICCS team to rollout new releases and 
patches. We deploy 4 major releases per year and 4-6 minor 
patches. For a major release, ICCS is given 24 hours of NIF 
time, most of which is needed to perform online testing 
with real hardware and to exercise a full NIF laser shot. 
Rollout of patches is much faster, 2-4 hours, and we are 
normally not given time to exercise a full test shot.  

NIF expects that after an ICCS software release or a 
patch is deployed, the control system software is fully qual-
ified for operations – there is no allowance for debugging 
or tweaking after the release. 

NIF experiments are conducted from the Control Room 
by a crew of 12 operators, led by a Shot Director. Operators 
are focused on safety, procedures and schedules. Control 
Room operators are not software engineers and they are not 
equipped to debug software during experimental cam-
paigns. Moreover, ICCS software engineers are not quali-
fied as NIF operators and they are not present in the Con-
trol Room during shot operations. 

NIF’s high expectations for availability and reliability 
dictate “zero tolerance for error”: 

• the downtime for the software upgrades and testing 
should be minimal 

• the downtime should be predictable, since shot opera-
tions must resume normally after the allocated conver-
sion time 

• there should be no surprise changes in hardware and 
system behaviors 

• machine safety requirements need to be explicitly re-
verified 

• there should be no significant change in operator inter-
actions, otherwise procedures will need to be updated 
and operators re-trained.   

Understanding these constraints rising from the need to 
assure uninterrupted scientific operations was the most 
formative factor in the development of our FEP Java mod-
ernization strategy.  

STRATEGIES AND CONSTRAINTS 
A control system modernization can be approached in 

several ways: 
• New Generation or a Complete Rewrite, when a new 

control system is developed from scratch, and the leg-
acy system is abandoned. 

• SkunkWorks or a Tiger Team approach, when the new 
generation software is developed in a backroom while 
operating and maintaining the legacy system until the 
new software is ready to switchover.  

• In-Place or Piecemeal incremental upgrade, when the 
new components are compatible with the existing sys-
tem, they gradually phased in until the entire system is 
modernized.  

• Gateway or a Federation, when the new software is not 
compatible with the legacy control system, but there is 
a software gateway which connects the parts. At ex-

treme, this strategy produces a Federation of the con-
trol systems, working together, but drastically dissim-
ilar in their protocols, control and data flows. 

 
Each of these strategies has strengths or flexibility in 

some areas while they are more limiting in others. We have 
summarized our understanding of these benefits and con-
straints in Fig. 3. The control system modernization deci-
sion should be based on organizational preferences, clear 
understanding of the alternatives and assessment of opera-
tional, budget and workforce risks.  

In our situation the modest In-Place upgrade strategy ap-
pears to be the only viable option, since minimizing facility 
downtime and assuring no unplanned outages are clearly 
the topmost concerns. Our organization budget has been 
flat for many years, we cannot hire a sizeable Tiger Team 
to work on the new technology while the core team contin-
ues to maintain the legacy system. Additionally, we would 
be concerned about loss of cohesion when multiple archi-
tectural paradigms coexist within the control system. Our 
team has considered the Gateway solution before and we 
like its technological flexibility, but we have decided that 
the added complexity does not justify the benefits. 

 
Figure 3: Control system upgrade strategies. 

In exchange for the flexibility with downtime and 
budget, the In-Place strategy requires that new modernized 
software has to be compatible with the rest of the system. 
The extent of the required compatibility needs to be under-
stood to determine which of ICCS architectural concepts 
should be preserved across migration and which will be re-
placed. 

ARCHITECTURE OF CHANGE 
CORBA-level Interfaces: Preserve 

CORBA is the middleware technology which ICCS uses 
to connect components over the control system network. 
All ICCS Interface Definition Language (IDL) modules are 
compiled both to Ada and Java. Carrying over IDL inter-
faces intact from legacy Ada to new Java software is a vital 
requirement for achieving smooth In-Place migration. 

Fortunately, CORBA has also been of great help support-
ing the migration, acting as a key modernization “pivoting 
pillar”. Conceptually, in the CORBA OOD paradigm, Ada 
and Java variants of the software are just alternative poly-
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morphic implementations of the same interface, and there-
fore they are guaranteed to be fully interchangeable from 
the client point of view, Fig. 4.  

 
Figure 4: CORBA Interfaces “abstract away” Ada-to-Java 
transition, assuring client compatibility. 

Database Schema: Preserve 
Preserving database schemas (see Fig. 5), i.e. the struc-

ture of the tables, is not a strict technical requirement. It is 
entirely plausible that the modernized variant of the soft-
ware will benefit from defining new datasets for its config-
uration settings, persistence and archive data. 

 
Figure 5: Reusing existing database tables between legacy 
and new software simplifies conversion-reversion process 
and it is transparent to facility operations and customers. 

However, since the configuration and archive tables are 
part of a broader interface between the control system and 
the facility enterprise, maintaining schema consistency is 
desired to assure that the software modernization remains 
entirely transparent to facility operators, procedures and 
processes, external systems. 

Additionally, reusing the same tables between legacy 
Ada and new Java implementations allows for easy switch-
ing between Ada/Java software by “repointing” the object 
identity.  

Identity and Naming: Preserve 
Every ICCS device is identified by a taxonomical name, 

or a taxon, consisting of four components: Subsystem, Lo-
cation, Unit, Identifier. At runtime, all access to an ICCS 
CORBA object is performed via a taxon lookup. Taxons 
also serve as a database key for configuration, persistence 
and archive data.  

To migrate a device, we just need to associate the device 
taxon with a Java FEP instead of an Ada FEP. The new Java 

device assumes all database data from the Ada device, and 
the rest of the control system will use the Java variant of 
the device without any additional changes. 

Importantly, the change is easily reversible. If a problem 
is discovered with the newly migrated Java code, the taxon 
can be reconfigured back to the legacy Ada software. The 
Ada application will resume operations with up-to-date 
persistence data left by the Java device.  

Implementation Level Design: Replace 
In the ICCS control system, CORBA objects are “fat”, 

each representing a non-trivial chunk of functionality. 
They can be thought of as a facade or microservice object. 
Internally, the implementation code for a single ICCS 
CORBA device may consists of dozens of classes and 
types. 

While the goal of the Ada/Java migration is to preserve 
the external CORBA interface exactly, there is no such re-
quirement for the design of the internal implementation. 
Although our legacy Ada 95 designs were also adherent to 
OOD principles, there have been significant rethinking of 
the OO practices and design patterns, with emphasis on 
composability, immutability and data flows inspired by 
Functional Programming. We have found that it is not 
worthwhile to follow the legacy designs even when the de-
tailed documentation exists from the 1990s. Instead, we  
reimplement external facade interfaces using modern Java 
design and coding patterns.  

Timing: Preserve (Reasonably) 
Timing characteristics of object behaviours are im-

portant, especially in a control system, and they need to be 
preserved during the Ada/Java migration. Unfortunately, 
there is no provision in CORBA IDL to specify the timing 
aspects of an interface contract. Instead, we are relying on 
automated component testing to measure Ada call dura-
tions and then validate Java timings. 

In most controls use cases, the timings are determined 
by the external hardware, so they are not computationally 
bound. While the precise reproduction of the call durations 
is not realistic and unnecessary, it is reasonable to expect 
that Ada/Java will have similar timing characteristic and 
any significant discrepancy should be a red flag for the de-
veloper.  

Tasking, Concurrency, Synchronization:  
Replace 

External timing properties of CORBA objects can be sig-
nificantly affected by the implementation threading and 
synchronization details. The FEPs in the control system are 
multi-threaded, exposed to dozens of unsynchronized net-
work clients and they are expected to respond promptly and 
predictably to these requests.  

Unfortunately, Ada95 and Java have incompatible 
threading and synchronization primitives, therefore Ada’s 
Tasks, Rendezvous and Conditional Entries have to be  
reimplemented with Java Threads, Executor Services and 
Queues. 
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User Interfaces and Interactions: Preserve 
The in-place upgrade requires that user interfaces and in-

teractions do not change at all when an FEP is migrated 
from Ada to Java. The control room operators should not 
be surprised and the FEP behaviours should not deviate 
from the existing facility procedures and documentation. It 
is common during the in-place migration process that some 
FEPs of certain type are running Java while the rest still 
operate with legacy Ada 95 software. 

Since ICCS GUIs are CORBA clients, the preservation 
of the GUI Look and Feel is achieved automatically once 
we preserve the CORBA interfaces. The overall user be-
haviour is more complex since it includes operator expec-
tations for business logic, input validation, timing and error 
reporting. Most of these properties can be verified at 
CORBA interface level with automated component test, 
without need for a manual GUI testing.  

Logging: Mostly Replaced 
Another valuable output of FEP software is its log files. 

The log files often contain the most detailed information 
about internal state of the program, its interactions with the 
controls hardware, clients and underlying infrastructure. 
Log files are used for monitoring of the system health, an-
alysing off-normals and predicting future trends.  

Log files have their consumers, and changes in the con-
tent or format of the logging may have a facility level im-
pact. This is especially true when a log analysis tool, such 
as Splunk [3] is deployed at the facility to extract perfor-
mance indicators, generate alerts and feed dashboard visu-
alizations. 

ICCS has standardized that both Ada and Java logs must 
contain certain key fields: timestamp, taxon, severity, 
thread id. However, the rest of the log message format is 
not formalized, and software developers can put any infor-
mation they consider relevant. Since logging is coupled to 
the specifics of the implementation, the nomenclature of 
the log messages does differ significantly between legacy 
and modernized applications.  

So, unfortunately, it was not realistic to preserve logging 
format across the Ada/Java migration. Some of our Splunk 
dashboards had to be redesigned to consume logging in 
new Java formats to support the migration. 

Keepers and Goers 
We summarize this section with diagram Fig. 6, mapping 

each concept to Idea – Implementation – Interaction hier-
archy of the Design Process [4]: each system first comes 
into existence as a pure idea in the maker mind, it then gets 
implemented in silicon and code, and finally becomes com-
plete when users interact with the system and thus with the 
original idea of the maker. 

 The diagram illustrates our focus on preservations of the 
original ideas and established user interactions, while “sil-
icon and code” are being ripped out and replaced.   

 
Figure 6: Summary of architecture concepts which are  
preserved (green) or replaced (red) over modernization. 

ASSURING MIGRATION FIDELITY 
When essentially everything is replaced at the “Imple-

mentation” level, how do we assure that modernized soft-
ware is still compliant to the “Idea” level specifications and 
that operator “Interactions” do not change?   

Thorough testing against the specification is desirable 
but difficult to implement for legacy software. The systems 
were developed 10+ years ago, and many of the original 
design documents became obsolete. Dozens or hundreds of 
change requests were implemented on top of the original 
designs, correcting and expanding software functionality. 
Without up-to-date and detailed requirements documents, 
it is difficult to define a comprehensive and accurate test 
plan.  

Fortunately, we have realized that correctly operating in-
stances of the control system can serve as a test fixture to 
supplement traditional testing processes. 

Legacy Software as a Reference Implementation 
We know that our legacy Ada 95 software works suc-

cessfully. Its interfaces, behaviours, timings are what the 
rest of the system and operators expect. 

We validate consistency of migrations with comprehen-
sive automated CORBA component-level tests which rely 
on legacy software as a reference implementation. Devel-
opers capture expected behaviors by exercising tests 
against Ada 95. Correctness, error handling and execution 
timings are addressed by these tests.  

Once the tests are “calibrated” against legacy code, they 
are used to validate new Java software, including method 
response times, Fig. 7.  

Integration Testing 
While the component level tests methodically exercise 

each method and compare them against their legacy vari-
ants, these individual tests are only as good as the devel-
oper’s knowledge of the device functions. Given a decade-
long gap since the original design, it is possible that this 
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Figure 7: Fragment of Ada-Java migration fidelity report. 

knowledge is incomplete, new code is deficient and the 
component level tests are blind to defects. In one example, 
a developer was not aware that a component is supposed to 
provide an optional “add-in” interface, so it was omitted 
entirely both from the new implementation and from the 
test suite.   

This omission was discovered by a system-level integra-
tion test. ICCS software team is supported by several of-
fline test instances of the control system, and our Auto-
mated Shot Test (AST) tool continuously runs the entire 
system through several variants of production-like experi-
ments. We replace the first article of a legacy component 
with its modernized replacement and execute experiments 
with AST. The rest of the control system serves as a call 
pattern generator by driving new software through realistic 
scenarios and under realistic concurrent load. The system 
also performs the validation, since the control system al-
ready embeds many checks of state, values and timings, 
normally used to assure that production facility hardware 
performs as expected but leveraged in this first article test 
to assure correctness of the code migration. 

Conversion and Reversion Scripts 
As emphasized earlier, we need to enforce a firm time 

limit on our software deployment and testing activities in 
the production NIF environment. Whether new software 
works or not, we need to return the system to fully opera-
tional state in time for the next laser shot experiment. We 
are relying on data-driven architecture of the control sys-
tem to switch between legacy Ada and new Java implemen-
tations.  

This technique is implemented by preparing both for-
ward conversion (Ada to Java) and reversion (Java to Ada) 
scripts and datasets. To assure robustness of these tests, we 
apply them in both directions in our integration and test 
environments. Shortly before a production release, we dry-
run them against a copy of the production database.  

CONCLUSION 
The ICCS team is wrapping up our multi-year effort to 

modernize NIF control system platforms, Fig. 8. This sum-

mer of 2019 we migrated the last of VxWorks/Pow-
erPC/Ada 95 FEPs to Linux/Intel/Java. ICCS is on sched-
ule to convert all remaining Solaris/Ada systems by De-
cember 2019. At that point, we will remove Ada 95 from 
our nightly builds, eliminating dependency on the obsolete 
toolset. 

 
Figure 8: Progress of FEP modernization. 

By adapting the “In-Place” strategy, our team has ac-
complished a comprehensive and deep upgrade of the con-
trol system while the NIF facility is running a busy 24x7 
experimental schedule and continues to expand its scien-
tific capabilities. Close coordination and shared values of 
excellent stewardship between ICCS and NIF Operations 
teams were essential for this success. 

Looking forward, the modernized Linux/Java/Intel plat-
form is well settled to serve NIF for the next 10-20 years. 
ICCS team is looking forward to apply our system migra-
tion expertise to new projects, such as hardware/firmware 
technology refresh of NIF Embedded Controllers. 
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