
IN-PLACE TECHNOLOGY REPLACEMENT OF A 24x7 OPERATIONAL
FACILITY: KEY LESSONS LEARNED AND SUCCESS STRATEGIES

FROM THE NIF CONTROL SYSTEM MODERNIZATION
M. Fedorov, G. Brunton, C. Estes, B. Fishler, M. Flegel, A. P. Ludwigsen, M. Paul, S. Townsend

Lawrence Livermore National Laboratory, Livermore, USA

Abstract
The National Ignition Facility (NIF) is the world's larg-

est laser system for Inertial Confinement Fusion (ICF) and
High Energy Density (HED) experiments. Design of the
NIF control system started in the 1990s, incorporating es-
tablished hardware and software technologies of that era.
The architecture of the control system has stood the test of
time, successfully scaling up to a full 192 laser beam con-
figuration in 2009, and then transitioning to 24x7 opera-
tions and sustaining 400 shots annually since 2016. The
control system has grown with NIF to add new major ca-
pabilities, such as cryogenic layering, a petawatt-class la-
ser, 3D neutron imaging and others. In parallel, with scal-
ing up and efficiency optimizations, the software had to
adapt to changes dictated by the fast-paced computer in-
dustry. Some of our originally chosen technologies have
become obsolete and replaced by new programming lan-
guages, frameworks and paradigms. In this paper, we dis-
cuss how the NIF control system has leveraged the
strengths of its distributed, crossplatform architecture to
successfully modernize "in-place" computing platforms
and programming languages without impacting the de-
manding experiment schedule.

INTRODUCTION
Large experimental physics facilities embody significant

investment of societal resources and they are expected to
last, gainfully generating scientific knowledge for 20-40
years. Computer industry moves much faster, periodically
forcing facilities’ control systems into major moderniza-
tions to address technology obsolescence, cybersecurity
and paradigm shifts in programming technologies.

Continuous pursuit of the experimenters’ goals at these
facilities may also mean that there will never be an ex-
tended downtime for a comprehensive “full rewrite” of the
control system. The alternative is an incremental “in-
place” upgrade in parallel with scientific operations,
stretching the modernization over numerous small win-
dows (2-4 hours) in the facility schedule. By overlapping
with other maintenance activities, the “in-place” approach
does help to minimize the overall downtime budget. How-
ever, each of these numerous upgrades carries a risk of an
unexpected behavior change or a system incompatibility.
While the planned downtime budget can be frugally nego-
tiated, facilities have zero tolerance for unplanned down-
time since it directly impacts the quantity and quality of
scientific output.

We explain how we have approached the “in-place” up-
grade by carefully inspecting the “pillars” supporting our
control system architecture. Some of these pillars had to be

removed and replaced, while others stayed and served as
pivots which helped our team to propel NIF Integrated
Computer Control System (ICCS) towards modern tech-
nologies.

To address the unplanned downtime risk, we have ex-
panded our automated testing by adding focused verifica-
tions of the fidelity of the software migrations, assuring
that new behaviors, timings and exceptions match those of
the legacy software. Finally, we have leveraged the data-
driven aspect of our architecture to develop a fast and reli-
able “conversion-reversion” process which assures that we
can always undo a migration upgrade and return the facility
to normal operations in a predictable time.

EVOLUTION OF ICCS TECHNOLOGIES
Early Days
The NIF control system was designed at the end of the
1990s. Reliability and scalability were the primary con-
cerns for hardware and software architects, which resulted
in selection of proven, well established technologies with
solid industry support. For the low-level, hardware-facing
Front-End-Processors (FEPs) the NIF team selected VME-
bus, Motorola PowerPC diskless crates running VxWorks
RTOS, Fig.1.

Figure 1: Evolution of ICCS technologies: fading red color
indicates legacy technologies on their way to obsolescence.
Deepening green illustrates growth of modern alternatives.
Solid green highlights enduring pillars of our architecture.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

WEDPL01
950

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

Sun SPARC servers and workstations under the Sun So-
laris UNIX OS were selected for supervisory and GUI ap-
plications [1].

In the software domain, a similar focus on type safety,
modularity and scalability has driven commitment to Ob-
ject Oriented Design (OOD), Ada 95 programming lan-
guage and CORBA middleware. To accentuate software re-
use and to support the never-ending expansion and modifi-
cation of the NIF systems, the control system topology and
configuration are data-driven, defined by structured data-
base entries. Oracle RDBMS was selected as a storage for
configuration data, persistence and history archive.

It is worth noting that all software tools and libraries in
the ICCS 1997 design [1] were proprietary, closed source
and expensive.

Java Moves In
Early in the prototype system development it became

clear that Ada 95 was lacking a healthy ecosystem. Very
few libraries were available outside of the core language,
which was a severe limitation for a universal and integrated
control system. ICCS needed a clean modern user inter-
face, and Microsoft Windows became the preferable plat-
form for the Control Room consoles due to its ease of use
and standard office tools. There were no good cross-plat-
form UI toolkits for Ada 95, proprietary or open-source.
Tellingly, Oracle discontinued its Ada database binding li-
brary.

At the same time, the quickly rising Java programming
language was offering consistent cross-platform UIs and
solid enterprise-level database driver libraries. This is
when ICCS team leveraged CORBA middleware as a
cross-language tool, by connecting Java components to
Ada using open-source JacORB middleware. The NIF con-
trol system became bilingual.

Soon after, Java became the language of choice for all
new software development. ICCS software engineers pre-
ferred Java because of its clarity, efficient and free devel-
opment tools and a whole universe of third-party libraries.
Most of the new hires did not know Ada 95 and they were
pleased not to learn the niche language.

FEP Challenge
By the early 2010s, all ICCS GUIs, and most of the su-

pervisory and shot automation applications were Java. At
the same time, our Ada 95 development toolchain became
a real burden: obsolete, poorly supported and expensive li-
censing. Our hardware facing FEP platform of VxWorks
5.4 and PowerPC was obsolete. Oracle had acquired Sun
Microsystems, tossing Sun Solaris OS and SPARC archi-
tecture towards obsolescence.

At this point, it became clear that we must entirely mi-
grate away from Ada 95, VxWorks and Solaris. We already
knew good alternatives to migrate to: Java, Linux and Intel.

Our Front-End-Processors (FEPs) became the last bas-
tion of legacy Ada 95/VxWorks/Solaris platform, lagging
because of the historical and technological reasons:

• Most of the FEP software was originally developed in
Ada 95 during early phases of the NIF construction,
before the ICCS Java stack became available.

• Controls hardware is attached to these FEPs, so the mi-
gration scope explodes into full replacement of the
computing platform, OS and specialized drivers.

• FEPs are directly controlling powerful energies and
expensive hardware, requiring formal re-verification
of the machine safety requirements whenever software
changes.

• Initially, Java platform was not as predictable for soft
real time control applications as VxWorks/Ada 95.
These concerns were addressed by newer JVMs, fast
multi-core CPUs and garbage collection management.

• There was a loss of the domain expertise for systems
designed years ago: many of the software engineers
and their electrical, optical, mechanical counterparts
have retired or moved on.

It is not surprising that the ICCS team was hesitant to
migrate the FEPs, leaving them until later because of the
complexity, impact and the risks. To eliminate legacy tech-
nologies from ICCS, we had to simultaneously rewrite FEP
software in a new language, switch to a new OS, new CPU
architecture and new drivers.

While NIF operations were supportive of the long-term
sustainability goal, our proposal to make such radical
changes to the core systems came when operations were
the least willing to introduce any downtimes or risks.

OPERATIONAL ENVIRONMENT
Construction of the NIF had concluded in 2009, ten

years ago, when 24x7 operations began with focus on max-
imizing the scientific output by increasing number of ex-
periments (“shots”), maximizing availability and continu-
ous innovation in laser, target and diagnostic capabilities,
Fig. 2.

Figure 2: NIF Shot Rate year-to-year. 391 shots are ex-
pected in 2019 [2].

The NIF operational schedule is thoroughly managed,
with experiment plans extending a year into the future and

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

Control System Upgrades
WEDPL01

951

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

getting highly detailed down to hours and minutes on a
week timescale. Within this schedule, a limited time is al-
located to the ICCS team to rollout new releases and
patches. We deploy 4 major releases per year and 4-6 minor
patches. For a major release, ICCS is given 24 hours of NIF
time, most of which is needed to perform online testing
with real hardware and to exercise a full NIF laser shot.
Rollout of patches is much faster, 2-4 hours, and we are
normally not given time to exercise a full test shot.

NIF expects that after an ICCS software release or a
patch is deployed, the control system software is fully qual-
ified for operations – there is no allowance for debugging
or tweaking after the release.

NIF experiments are conducted from the Control Room
by a crew of 12 operators, led by a Shot Director. Operators
are focused on safety, procedures and schedules. Control
Room operators are not software engineers and they are not
equipped to debug software during experimental cam-
paigns. Moreover, ICCS software engineers are not quali-
fied as NIF operators and they are not present in the Con-
trol Room during shot operations.

NIF’s high expectations for availability and reliability
dictate “zero tolerance for error”:

• the downtime for the software upgrades and testing
should be minimal

• the downtime should be predictable, since shot opera-
tions must resume normally after the allocated conver-
sion time

• there should be no surprise changes in hardware and
system behaviors

• machine safety requirements need to be explicitly re-
verified

• there should be no significant change in operator inter-
actions, otherwise procedures will need to be updated
and operators re-trained.

Understanding these constraints rising from the need to
assure uninterrupted scientific operations was the most
formative factor in the development of our FEP Java mod-
ernization strategy.

STRATEGIES AND CONSTRAINTS
A control system modernization can be approached in

several ways:
• New Generation or a Complete Rewrite, when a new

control system is developed from scratch, and the leg-
acy system is abandoned.

• SkunkWorks or a Tiger Team approach, when the new
generation software is developed in a backroom while
operating and maintaining the legacy system until the
new software is ready to switchover.

• In-Place or Piecemeal incremental upgrade, when the
new components are compatible with the existing sys-
tem, they gradually phased in until the entire system is
modernized.

• Gateway or a Federation, when the new software is not
compatible with the legacy control system, but there is
a software gateway which connects the parts. At ex-

treme, this strategy produces a Federation of the con-
trol systems, working together, but drastically dissim-
ilar in their protocols, control and data flows.

Each of these strategies has strengths or flexibility in

some areas while they are more limiting in others. We have
summarized our understanding of these benefits and con-
straints in Fig. 3. The control system modernization deci-
sion should be based on organizational preferences, clear
understanding of the alternatives and assessment of opera-
tional, budget and workforce risks.

In our situation the modest In-Place upgrade strategy ap-
pears to be the only viable option, since minimizing facility
downtime and assuring no unplanned outages are clearly
the topmost concerns. Our organization budget has been
flat for many years, we cannot hire a sizeable Tiger Team
to work on the new technology while the core team contin-
ues to maintain the legacy system. Additionally, we would
be concerned about loss of cohesion when multiple archi-
tectural paradigms coexist within the control system. Our
team has considered the Gateway solution before and we
like its technological flexibility, but we have decided that
the added complexity does not justify the benefits.

Figure 3: Control system upgrade strategies.

In exchange for the flexibility with downtime and
budget, the In-Place strategy requires that new modernized
software has to be compatible with the rest of the system.
The extent of the required compatibility needs to be under-
stood to determine which of ICCS architectural concepts
should be preserved across migration and which will be re-
placed.

ARCHITECTURE OF CHANGE
CORBA-level Interfaces: Preserve

CORBA is the middleware technology which ICCS uses
to connect components over the control system network.
All ICCS Interface Definition Language (IDL) modules are
compiled both to Ada and Java. Carrying over IDL inter-
faces intact from legacy Ada to new Java software is a vital
requirement for achieving smooth In-Place migration.

Fortunately, CORBA has also been of great help support-
ing the migration, acting as a key modernization “pivoting
pillar”. Conceptually, in the CORBA OOD paradigm, Ada
and Java variants of the software are just alternative poly-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

WEDPL01
952

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

morphic implementations of the same interface, and there-
fore they are guaranteed to be fully interchangeable from
the client point of view, Fig. 4.

Figure 4: CORBA Interfaces “abstract away” Ada-to-Java
transition, assuring client compatibility.

Database Schema: Preserve
Preserving database schemas (see Fig. 5), i.e. the struc-

ture of the tables, is not a strict technical requirement. It is
entirely plausible that the modernized variant of the soft-
ware will benefit from defining new datasets for its config-
uration settings, persistence and archive data.

Figure 5: Reusing existing database tables between legacy
and new software simplifies conversion-reversion process
and it is transparent to facility operations and customers.

However, since the configuration and archive tables are
part of a broader interface between the control system and
the facility enterprise, maintaining schema consistency is
desired to assure that the software modernization remains
entirely transparent to facility operators, procedures and
processes, external systems.

Additionally, reusing the same tables between legacy
Ada and new Java implementations allows for easy switch-
ing between Ada/Java software by “repointing” the object
identity.

Identity and Naming: Preserve
Every ICCS device is identified by a taxonomical name,

or a taxon, consisting of four components: Subsystem, Lo-
cation, Unit, Identifier. At runtime, all access to an ICCS
CORBA object is performed via a taxon lookup. Taxons
also serve as a database key for configuration, persistence
and archive data.

To migrate a device, we just need to associate the device
taxon with a Java FEP instead of an Ada FEP. The new Java

device assumes all database data from the Ada device, and
the rest of the control system will use the Java variant of
the device without any additional changes.

Importantly, the change is easily reversible. If a problem
is discovered with the newly migrated Java code, the taxon
can be reconfigured back to the legacy Ada software. The
Ada application will resume operations with up-to-date
persistence data left by the Java device.

Implementation Level Design: Replace
In the ICCS control system, CORBA objects are “fat”,

each representing a non-trivial chunk of functionality.
They can be thought of as a facade or microservice object.
Internally, the implementation code for a single ICCS
CORBA device may consists of dozens of classes and
types.

While the goal of the Ada/Java migration is to preserve
the external CORBA interface exactly, there is no such re-
quirement for the design of the internal implementation.
Although our legacy Ada 95 designs were also adherent to
OOD principles, there have been significant rethinking of
the OO practices and design patterns, with emphasis on
composability, immutability and data flows inspired by
Functional Programming. We have found that it is not
worthwhile to follow the legacy designs even when the de-
tailed documentation exists from the 1990s. Instead, we
reimplement external facade interfaces using modern Java
design and coding patterns.

Timing: Preserve (Reasonably)
Timing characteristics of object behaviours are im-

portant, especially in a control system, and they need to be
preserved during the Ada/Java migration. Unfortunately,
there is no provision in CORBA IDL to specify the timing
aspects of an interface contract. Instead, we are relying on
automated component testing to measure Ada call dura-
tions and then validate Java timings.

In most controls use cases, the timings are determined
by the external hardware, so they are not computationally
bound. While the precise reproduction of the call durations
is not realistic and unnecessary, it is reasonable to expect
that Ada/Java will have similar timing characteristic and
any significant discrepancy should be a red flag for the de-
veloper.

Tasking, Concurrency, Synchronization:
Replace

External timing properties of CORBA objects can be sig-
nificantly affected by the implementation threading and
synchronization details. The FEPs in the control system are
multi-threaded, exposed to dozens of unsynchronized net-
work clients and they are expected to respond promptly and
predictably to these requests.

Unfortunately, Ada95 and Java have incompatible
threading and synchronization primitives, therefore Ada’s
Tasks, Rendezvous and Conditional Entries have to be
reimplemented with Java Threads, Executor Services and
Queues.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

Control System Upgrades
WEDPL01

953

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and Interactions: Preserve
The in-place upgrade requires that user interfaces and in-

teractions do not change at all when an FEP is migrated
from Ada to Java. The control room operators should not
be surprised and the FEP behaviours should not deviate
from the existing facility procedures and documentation. It
is common during the in-place migration process that some
FEPs of certain type are running Java while the rest still
operate with legacy Ada 95 software.

Since ICCS GUIs are CORBA clients, the preservation
of the GUI Look and Feel is achieved automatically once
we preserve the CORBA interfaces. The overall user be-
haviour is more complex since it includes operator expec-
tations for business logic, input validation, timing and error
reporting. Most of these properties can be verified at
CORBA interface level with automated component test,
without need for a manual GUI testing.

Logging: Mostly Replaced
Another valuable output of FEP software is its log files.

The log files often contain the most detailed information
about internal state of the program, its interactions with the
controls hardware, clients and underlying infrastructure.
Log files are used for monitoring of the system health, an-
alysing off-normals and predicting future trends.

Log files have their consumers, and changes in the con-
tent or format of the logging may have a facility level im-
pact. This is especially true when a log analysis tool, such
as Splunk [3] is deployed at the facility to extract perfor-
mance indicators, generate alerts and feed dashboard visu-
alizations.

ICCS has standardized that both Ada and Java logs must
contain certain key fields: timestamp, taxon, severity,
thread id. However, the rest of the log message format is
not formalized, and software developers can put any infor-
mation they consider relevant. Since logging is coupled to
the specifics of the implementation, the nomenclature of
the log messages does differ significantly between legacy
and modernized applications.

So, unfortunately, it was not realistic to preserve logging
format across the Ada/Java migration. Some of our Splunk
dashboards had to be redesigned to consume logging in
new Java formats to support the migration.

Keepers and Goers
We summarize this section with diagram Fig. 6, mapping

each concept to Idea – Implementation – Interaction hier-
archy of the Design Process [4]: each system first comes
into existence as a pure idea in the maker mind, it then gets
implemented in silicon and code, and finally becomes com-
plete when users interact with the system and thus with the
original idea of the maker.

 The diagram illustrates our focus on preservations of the
original ideas and established user interactions, while “sil-
icon and code” are being ripped out and replaced.

Figure 6: Summary of architecture concepts which are
preserved (green) or replaced (red) over modernization.

ASSURING MIGRATION FIDELITY
When essentially everything is replaced at the “Imple-

mentation” level, how do we assure that modernized soft-
ware is still compliant to the “Idea” level specifications and
that operator “Interactions” do not change?

Thorough testing against the specification is desirable
but difficult to implement for legacy software. The systems
were developed 10+ years ago, and many of the original
design documents became obsolete. Dozens or hundreds of
change requests were implemented on top of the original
designs, correcting and expanding software functionality.
Without up-to-date and detailed requirements documents,
it is difficult to define a comprehensive and accurate test
plan.

Fortunately, we have realized that correctly operating in-
stances of the control system can serve as a test fixture to
supplement traditional testing processes.

Legacy Software as a Reference Implementation
We know that our legacy Ada 95 software works suc-

cessfully. Its interfaces, behaviours, timings are what the
rest of the system and operators expect.

We validate consistency of migrations with comprehen-
sive automated CORBA component-level tests which rely
on legacy software as a reference implementation. Devel-
opers capture expected behaviors by exercising tests
against Ada 95. Correctness, error handling and execution
timings are addressed by these tests.

Once the tests are “calibrated” against legacy code, they
are used to validate new Java software, including method
response times, Fig. 7.

Integration Testing
While the component level tests methodically exercise

each method and compare them against their legacy vari-
ants, these individual tests are only as good as the devel-
oper’s knowledge of the device functions. Given a decade-
long gap since the original design, it is possible that this

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

WEDPL01
954

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Upgrades

Figure 7: Fragment of Ada-Java migration fidelity report.

knowledge is incomplete, new code is deficient and the
component level tests are blind to defects. In one example,
a developer was not aware that a component is supposed to
provide an optional “add-in” interface, so it was omitted
entirely both from the new implementation and from the
test suite.

This omission was discovered by a system-level integra-
tion test. ICCS software team is supported by several of-
fline test instances of the control system, and our Auto-
mated Shot Test (AST) tool continuously runs the entire
system through several variants of production-like experi-
ments. We replace the first article of a legacy component
with its modernized replacement and execute experiments
with AST. The rest of the control system serves as a call
pattern generator by driving new software through realistic
scenarios and under realistic concurrent load. The system
also performs the validation, since the control system al-
ready embeds many checks of state, values and timings,
normally used to assure that production facility hardware
performs as expected but leveraged in this first article test
to assure correctness of the code migration.

Conversion and Reversion Scripts
As emphasized earlier, we need to enforce a firm time

limit on our software deployment and testing activities in
the production NIF environment. Whether new software
works or not, we need to return the system to fully opera-
tional state in time for the next laser shot experiment. We
are relying on data-driven architecture of the control sys-
tem to switch between legacy Ada and new Java implemen-
tations.

This technique is implemented by preparing both for-
ward conversion (Ada to Java) and reversion (Java to Ada)
scripts and datasets. To assure robustness of these tests, we
apply them in both directions in our integration and test
environments. Shortly before a production release, we dry-
run them against a copy of the production database.

CONCLUSION
The ICCS team is wrapping up our multi-year effort to

modernize NIF control system platforms, Fig. 8. This sum-

mer of 2019 we migrated the last of VxWorks/Pow-
erPC/Ada 95 FEPs to Linux/Intel/Java. ICCS is on sched-
ule to convert all remaining Solaris/Ada systems by De-
cember 2019. At that point, we will remove Ada 95 from
our nightly builds, eliminating dependency on the obsolete
toolset.

Figure 8: Progress of FEP modernization.

By adapting the “In-Place” strategy, our team has ac-
complished a comprehensive and deep upgrade of the con-
trol system while the NIF facility is running a busy 24x7
experimental schedule and continues to expand its scien-
tific capabilities. Close coordination and shared values of
excellent stewardship between ICCS and NIF Operations
teams were essential for this success.

Looking forward, the modernized Linux/Java/Intel plat-
form is well settled to serve NIF for the next 10-20 years.
ICCS team is looking forward to apply our system migra-
tion expertise to new projects, such as hardware/firmware
technology refresh of NIF Embedded Controllers.

ACKNOWLEDGMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-739363.

REFERENCES
[1] P. Van Arsdall, “Integrated computer control system architec-

tural overview”, No. UCRL-ID-128811. Lawrence Livermore
National Lab., CA (United States), 1997.

[2] G. K. Brunton et al., “Status of the National Ignition Facility
(NIF) Integrated Computer Control and Information Sys-
tems”, presented at the 17th Int. Conf. on Accelerator and
Large Experimental Control Systems (ICALEPCS'19), New
York, NY, USA, Oct. 2019, paper MOAPP04, this
conference.

[3] M. A. Fedorov et al., “Leveraging Splunk for Control System
Monitoring and Management”, in Proc. ICALEPCS'17, Bar-
celona, Spain, Oct. 2017, pp. 253-257.
doi:10.18429/JACoW-ICALEPCS2017-TUCPA02

[4] Brooks Jr, Frederick P. The design of design: Essays from a
computer scientist. Pearson Education, 2010.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEDPL01

Control System Upgrades
WEDPL01

955

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

