
IT INFRASTRUCTURE FOR SAFETY SYSTEMS DEVELOPMENT AT ESS
S. Armanet∗, R. Mudingay† , European Spallation Source, Lund, Sweden

Abstract
The Control System Infrastructure team has deployed a

dedicated isolated environment to support Safety Systems
development at ESS.

We have tried to take advantage of our standardised infras-
tructure components for controls like virtualization, central-
ized storage, system orchestration and software deployment
strategy. Because we already have all these components
in place for our Control System IT infrastructure we have
decided to treat engineering workstations as disposable com-
ponents in an isolated and dedicated virtualized environment.
We have designed the environment to control who and when
users can access the development environment, from which
device, to which workstations and what they can run in this
environment.

INTRODUCTION
Safety systems design and development are critical parts

of ESS development and operation phases. They are con-
trolled and reviewed by the Swedish nuclear safety author-
ities and a priority in our cyber security plans. The devel-
opment process has to follow a well defined security plan
and risk assessment and the development environment has
to follow these rules. Basically these rules are to answer
these questions:

• who can access the development environment?
• when can these users can access it?
• from which devices?
• to which engineering workstations?
• to do what?
In the ICS infrastructure team we have decided to imple-

ment engineering workstations has disposable workstations
so that we simplify the requirements on managing Windows
workstations. These workstations run on a network that is
completely stand alone and isolated from any other network.

The only way to access them is using the Remote Desk-
top Protocol from controlled clients. This environment is
fully virtualized which permit us to achieve these goals in a
flexible and automated way.

We provide all required tools to program safety systems in
a controlled way and we are evaluating a way to interact with
external hardware from this environment by using dedicated
transfer workstation with ad hoc controls and restrictions.

SYSTEM DESCRIPTION
Infrastructure

Because our orchestration process allows us to easily tar-
get where we want to deploy virtual machines, we have

∗ stephane.armanet@esss.se
† remy.mudingay@esss.se

Figure 1: System description.

decided to split our infrastructure (see Fig. 1) in different
virtualization cluster and network layers [1].

This way we can easily adapt each cluster to its specific
use case and manage network connectivity specifically for
each cluster. We use a simple open source Virtualization
solution for our clusters and our orchestration tool talk to
it’s API to deploy virtual machine. This is to avoid complex
virtualization solution and keep the management of different
cluster easy within a small team.

The virtualization solution supports multi-user, dis-
tributed management, 2 factor authentication, High avail-
ability and live VM and storage migration. VM location
are defined in our CMDB based on network membership,
functional group membership or host based definition. Our
clusters are composed of at least 3 nodes for redundancy,
maintainability and high availability.

We have a shared storage back-end.At the moment our stor-
age is based on replicated ZFS NAS. We use ZFS snapshots
send/receive as backup tool for safety systems.

Our plan is to deploy our clusters across 3 data cen-
tres/server rooms to avoid split brain scenario. Our storage
cluster will also be redundant across these 3 server rooms.

We will share a common storage cluster but with dedicated
pools for each environment.

Orchestration
We use Ansible as automation tool. Our roles and play-

books are hosted on an internal gitlab repository and use our
CMDB (CSentry) as dynamic inventory.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA104

Control System Infrastructure
WEPHA104

1343

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



We use git as version control software. All our roles
and playbook are automatically tested in the continuous
integration pipeline using Ansible Molecule.

We use Artifactory as internal software repository for all
kinds of packages (Linux RPM, conda, simple archives ...).
AWX is used as job scheduler and allow us to delegate to
users the execution of certain tasks.

For instance, safety system engineers are allowed to up-
load their PLC code reports that include safety code check-
sum by executing a predefined job using AWX.

Ansible is used to create VM, deploy and configure soft-
ware, ensure that each system is in the state that has been
described by the configuration management process.

The orchestration also permit to automatically config-
ure network switches and assign VLANs according to our
CMDB.

Engineering Workstations
Each safety system run on it’s own isolated network. Some

common resources are shared across these networks for cost
and maintenance efficiency. The common resources are
also part of the isolated environment on a separate virtual
network. An internal firewall sits in the middle of all these
virtual networks to prevent safety systems to reach each
others as well as permit access to these common resources.

It could also be used as a NATing device to allow commu-
nication from a dedicated transfer workstation to external
devices for programming and upgrades. This could only
be done with enforced connection control and authorisation
management to the external devices.

We install Windows workstations and infrastructure ser-
vices using our orchestration process relying on these tools:

• Ansible for configuration management [2, 3]
• gitlab for code and playbook version control
• CSentry has CMDB and system tuning [4]
• Ansible tower (AWX) as task scheduler and deployment

system [5]
• Artifactory as internal software repository [6]
Linux systems are installed and updated by a scripted

installation process managed by an Ansible playbook. Win-
dows systems are installed by cloning a template.

Windows systems are managed as disposable systems,
we manage updates by re-deploying these workstations. We
provide all ad-hoc components into the isolated environment
as the orchestration allow us the provision any number of
instances for these components:

• Network services: DNS and DHCP. We assign prede-
fined MAC addresses and DHCP reservation to our
virtual machine from as defined in our CMDB.

• Authentication and Windows domain membership: we
have deployed a dedicated Windows Active Directory
Forest that has a trust relationship with our central For-
est. This allows the registration/suppression of Win-
dows workstations without the need to open Windows
communication outside of the isolated environment.
The trust relationship allow users to use their central

forest account to authenticated on the engineering work-
stations.

• Dedicated PLC code repository: this is to allow users
to store their project outside of the engineering worksta-
tions with version control. It could also act as a source
to transfer PLC code to the real devices.

• File Services: as our workstations are disposable, this is
to allow users to save documents that are outside of the
version controlled projects.This way we can re-deploy
their workstations at any time(ie: software updates).
This also act as temporary internal software repository,
anti-virus server and back end storage to send reports
with code checksums outside of the isolated environ-
ment.

• HTTP proxy: to allow antivirus updates from the file
server.

• Syslog relay: to send all logs to an external logging
facility.

User Access
Access to the engineering workstations are only allowed

through a privileged access management (P.A.M) or admin
bastion solution.

Users can only access their workstations using the RDP
protocol. File transfer are disabled and RDP sessions could
be recorded. Depending on how critical the system is, we can
enforce RDP connection to come from a controlled device.

We use several functions of the P.A.M to achieve a good
user control:

• 2 Factor Authentication: to ensure that the user logged
in is the right person.

• Per user access rules: a user can only access a specific
list of workstations from a well known remote desktop
client.

• Adaptive Approval workflow: A user can have auto-
matic approval (with the requirement of filling an access
form) to access a development workstation. When there
is a need for real device access, the workflow could be
enforced to explicit approval by a system owner. In
that case the user would have to connect to a specific
transfer workstation where these rules would apply.

• Program execution control: even if we control which
software has been installed on the engineering work-
stations, the P.A.M provide the capability to block the
execution of applications. This could help to enforce
the control of transfer workstations.

• Session recording - 4 eyes monitoring: RDP sessions
can be recorded and/or followed by an external admin-
istrator. This feature could also be used to secure code
transfer to external devices.

We try to avoid users to work from their own workstations
(personal computers connected to the Office network). We
have deployed hardened linux workstations to be used as
remote desktop clients (Thinclient). These workstations are
not connected to the office network.

Users can only execute the remote desktop client from
these workstations. They can’t run any other software or

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA104

WEPHA104
1344

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



open a shell connection. USB storage is disable. Local
access (BIOS,boot loader ) are password protected.

Users have to be explicitly allowed to connect to one of
these Thinclient. Local firewall rules prevent the users to
open connection to other remote servers than the P.A.M.

These Thin Clients are supposed to be installed in a locked
room only accessible by safety system engineers.

CONTROLS AND MONITORING
Controls

Figure 2 shows the controls and monitoring structure:

Figure 2: Controls and monitoring structure.

Software Control All software are deployed form a
dedicated software repository to each safety system. This
way we have a strict control on what can be installed on the
engineering workstations and their versions.

Software are installed in a VM template. If there is a need
for a new software or for updates, our process is to re-deploy
the workstations. All PLC code is version controlled using
a dedicated software. This software also acts as a central
repository for up to date PLC code. It could be used as
source repository for real device programming or firmware
upgrades (through dedicated transfer workstation). The PLC
code repository can use the file server to host it’s database
backup.

Users can also save their documents on a personal share
on the file server.

Users needs to send report containing PLC code safety
checksums. They use a delegation from our orchestration
tool to upload they’re PDF report outside of the isolated
environment. The orchestration provide user authentication

and controls on which file can be uploaded. The file server
acts as a pivot in that process for virus checking. We try to
avoid interaction between system administration and user
content. We backup the virtualization plate-form as a whole
so that we don’t need to get access inside each workstation.

The P.A.M provide application execution control capabili-
ties. We could define a white list of application that a user is
able to run on an engineering or transfer workstation. This
also give us the capability to alert in case of bad behaviour
of a workstation.

Logs are centralized to our central logging solution. This
helps to perform correlation analysis and monitoring regard-
ing the technical network as a whole. Network connection
inside the isolated environment are managed by the virtu-
alization plate-form. Physical devices network access are
automatically assigned by our orchestration process (CMDB
+ Ansible + Radius).

Monitoring and Threat Prevention
The safety system environment is monitored like all others

systems part of the Control System infrastructure. We use
standard monitoring and threat detection components and
try to centralize as much as possible these information to
enable log correlation.

Our monitoring infrastructure is hosted on a dedicated
cluster for efficient monitoring and combined different kind
of tools:

• log centralisation: we use syslog as much as possible
but our central syslog tool is a combination of syslog-ng
(archiving) and graylog (indexation, correlation, alert-
ing). Graylog provide some nice features for non-syslog
kind of logs (windows, java applications ...)

• System Monitoring: we mainly use Zabbix as moni-
toring solution but as our infrastructure is growing we
are slowly combine it with Prometheus which provide
a nice and efficient time series database.

• Threat Detection: we use a L7 next generation type of
firewall which provides its own threat prevention capa-
bilities combined with an open-source IPS deployed
across most of our networks. Our Privileged Access
Management solution also provide in-depth remote
desktop session analysis and blocking capabilities. We
use Graylog for alerting and dashboarding

• Sflow: we collect sflowsamples from our main switches
and routers as well as our virtualization infrastructure to
be able to see inter-VMtraffic. We centralize all streams
on a powerful open-source collector (Elastiflow) which
provides useful dashboards.

• Dashboarding and alerting: we mainly use Grafana
connected to the Zabbix and Prometheus databases.
We have different kinds of alerting media (Web, slack,
email). Alerts are mainly coming from Zabbix, we are
currently building alerts based Prometheus.

• Network probes and Security centre: This is an ongoing
project. We are currently studying the possibility to
deploy network scanner connected to a central security
centre. The security centre will be linked to a ticketing

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA104

Control System Infrastructure
WEPHA104

1345

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



systems which will help us to schedule system upgrades
as well as react to emergency situations. This system
will be linked to our orchestration solution (manual or
automatic job scheduling).

CONCLUSION
We have built a scalable development environment that

can host projects isolated from each others. We have also
built a cost effective infrastructure by using mainly open
source software and shared resources (virtualisation, com-
pute and storage). Some components are still in under de-
velopment like log correlation, threat detection and SIEM
(Security Information and Event Management), but we are
confident that we have a sustainable and secure plate-form
to support safety and critical systems developments for ESS.

REFERENCES
[1] Practical Overview of Implementing IEC 62443 Security

Levels in Industrial: https://www.schneider-electric.
com/en/download/document/998-20186845/

[2] Ansible:
https://www.ansible.com/

[3] Molecule:
https://molecule.readthedocs.io/en/stable/

[4] CSentry:
https://gitlab.esss.lu.se/ics-infrastructure/
csentry

[5] AWX:
https://www.ansible.com/products/awx-project

[6] JFrog Artifactory: https://jfrog.com/artifactory/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA104

WEPHA104
1346

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure


