
MONITORING SYSTEM FOR IT INFRASTRUCTURE AND EPICS
CONTROL SYSTEM AT SuperKEKB

S. Sasaki†, T. T. Nakamura, KEK, Tsukuba, Japan
M. Hirose, Kanto Information Service, Tsuchiura, Japan

Abstract
The monitoring system has been deployed to efficiently

monitor IT infrastructure and EPICS control system at
SuperKEKB. The system monitors two types of data: met-
rics and logs. Metrics such as a network traffic and a CPU
utilization are monitored with Zabbix. The data stored in
Zabbix are visualized on Grafana, which allows us to easily
create dashboards and analyze the data. Logs such as text
data are monitored with Elastic Stack, which provides log
collection, searching, analysis and visualization. We have
applied it to monitor broadcast packets in the control net-
work and EPICS control system. In addition, we have de-
veloped the EPICS Channel Access client software that
sends PV values to Zabbix server and the status of each
IOC is monitored with it. We have also developed the
Grafana plugin and API gateway to visualize the data from
pvAccess RPC servers. Various data such as CSS alarm sta-
tus data is displayed on it.

INTRODUCTION
SuperKEKB [1] is an asymmetric-energy electron-posi-

tron double ring collider. Its target luminosity is 8 × 1035
cm-2 s-1 which is 40 times higher than that of the preceding
project, KEKB.

The SuperKEKB control system is based on EPICS [2].
The control system involves hundreds of computers which
are networked together to allow communication between
them. Therefore, monitoring the IT infrastructure is essen-
tial for a stable accelerator operation. We have deployed
the monitoring system to monitor the IT infrastructure and
EPICS control system. The system monitors two types of
data: metrics and logs. This paper describes the system ar-
chitectures and its applications that we have implemented.

METRIC MONITORING
Metrics are collection of a measurement at a certain

point in time. They are typically collected at fixed-time in-
tervals and referred to as a time series data. We monitor the
metrics such as a network traffic and a CPU utilization with
Zabbix [3].

Zabbix
Zabbix is an open-source monitoring software tool. It is

integrated multiple features for monitoring as shown be-
low:

• Data gathering.
• Alerting.
• Data visualization.

• Historical data storage.
• Network discovery.
We have monitored 22 computers for servers and opera-

tor consoles and 88 network switches. About 30000 items
and 10000 triggers have been monitored. Data gathering is
performed with SNMP or Zabbix agent.

Alerting settings
Zabbix supports triggers, which are logical expressions

to evaluate gathered data and represents the current system
state. Zabbix allows taking place some operations when
trigger status changed. We have applied it to notify system
problems by e-mail.

Trigger has severity parameter to defines how important
a trigger is. Zabbix supports following trigger severities:
Not classified, Information, Warning, Average, High and
Disaster. We have configured notification behavior accord-
ing to trigger severities. Alerts for High or Disaster severity
are immediately notified. On the other hand, alerts for
Warning or Average severity are notified when its trigger
state remains PLOBLEM for 24 hours. There are no noti-
fications for Information. This prevents major severity no-
tifications from being buried in minor severity notifications.

Data Visualization on Grafana
Grafana [4] is an open-source software tool for data vis-

ualization and analysis. It allows to visualize data from var-
ious data storage backend. We can easily create and view
dashboards via a web browser with Grafana.

Grafana is extendable with plugins to add a new panel or
a datasource. We have applied Zabbix plugin [5] to Grafana
to visualize the data stored in Zabbix data storage. This
plugin provides metric processing functions to transform
and shape the data. Figure 1 shows computer performance
metrics on Grafana.

Figure 1: Grafana dashboard for computer
performance metrics. The metrics are retrieved from
Zabbix data storage.

† shinya.sasaki@kek.jp

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

Control System Infrastructure
WEPHA134

1413

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2 shows Grafana panel for network traffic moni-
toring. This panel shows received network traffic on top 5
ports in the core switch using metric processing functions.

Figure 2: Grafana panel for incoming network traffic on
core switch. Only top 5 ports in the switch are displayed
using metric processing functions. Orange line indicates
the traffic from Linac is reached to 500 Mbps. Red line in-
dicates large data transfer occupies about 1 Gbps band-
width.

LOG MONITORING
Log is text messages generated from an operating system

or other software. Log data are typically generated when
some event occurred and usually include timestamps which
indicate when the events occurred. In most cases, parsing
process is required to extract information from a log. We
adopt Elastic Stack [6] for log data collection, searching,
analysis and visualization.

Elastic Stack
Elastic Stack is a software stack for log monitoring also

known as ELK Stack. It is comprised of Elasticsearch,
Logstash, Kibana.

Elasticsearch Elasticsearch is a distributed, open-
source search and analytics engine built on top of Lucene
[7]. It stores complex data structures that have been serial-
ized as JSON documents.

Logstash Logstash is used to aggregate and process
data. It ingests data from multiple sources simultaneously
and transform it before send it to Elasticsearch.

Kibana Kibana is a web-based analytics and visuali-
zation tool designed to work with Elasticsearch. It is avail-
able to search, view and interact with the data stored in
Elasticsearch.

We have applied Elastic Stack to monitor broadcast
packets and the EPICS control system.

Broadcast Packets Monitoring
We have monitored broadcast packets in the control net-

work. Channel Access (CA) [8] uses broadcast for server
beacons and PV name search requests. Analyzing broad-
cast packets allows to identify IOC that behaves anomaly
or sends a lot of PV search requests.

The system architecture for the broadcast packets moni-
toring is shown in Fig. 3. We use TShark to dump broadcast

packets. TShark is a command-line utility to capture and
analyze network traffic provided by Wireshark [9]. TShark
supports an JSON output format for Elasticsearch Bulk
API. The output of TShark is ingested to Logstash and fi-
nally stored in Elasticsearch. We have applied cashark [10],
which is a Wireshark dissector plugin for CA protocol and
provides decoding of CA traffic.

Figure 3: Broadcast packets monitoring pipeline.

Figure 4 shows a dashboard for the broadcast monitoring
on Kibana. As the packets are decoded with cashark, CA
command information such as command ID, version,
searched channel name is allowed to be displayed.

Figure 4: Dashboard for broadcast monitoring on Kibana.

EPICS Control System Monitoring
We have monitored CA search frequencies and IOC bea-

cons. CA search frequencies are monitored with caSnooper
[11], which reports search frequencies for each searched
PV to standard output. We have configured caSnooper to
output the frequencies per 10 minutes and its outputs are
parsed and sent to Elasticsearch with Logstash. Beacons
are monitored with CASW (Channel Access Server
Watcher) and ParseCASW [12], which are beacon diagnos-
tic tools. Monitoring beacons brings a useful information
to debug CA network problems.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

WEPHA134
1414

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

EPICS PV MONITORING WITH ZABBIX
We had several problems on EPICS IOC. For example,

new CA client was rejected due to high CPU utilization or
high memory consumption. To keep IOC healthy, monitor-
ing IOC performance is required.

We have implemented EPICS PV monitoring system
with Zabbix for IOC monitoring. PV values are monitored
as metrics and they are managed as well as the metrics for
IT infrastructure.

CA Client for Zabbix
We have developed zabbix-epics-py [13], CA client soft-

ware to send PV value as a metric to Zabbix. It uses PyEp-
ics [14] to collect PV values and py-zabbix [15] to send
metrics to Zabbix server.

Figure 5 is an example usage of zabbix-epics-py. Zab-
bix-epics-py requires list of dictionaries including PV
name, host name, item key, interval and func. Host name
and item key should be registered in Zabbix. Item type sent
PV values must be Zabbix trapper.

Figure 5: Example usage of zabbix-epics-py.

Interval is a time between metrics sending. PV values are
stored in a buffer in the interval. Func determines what
function is applied to the buffer before sending metric. For
example, the latest value in the buffer is sent when last is
specified to func while averaged value is sent when avg is
specified. There are 4 functions for func: last, min, max and
avg. All updated values are sent when monitor is set to in-
terval, then specification of func is ignored.

Figure 6 shows behavior of zabbix-epics-py. The moni-
tored PV value is updated to 3, 4 and 5. Therefore, the
buffer stores three values. As max is specified to func, 5
which is the max value in the buffer is sent to Zabbix server.

Figure 6: Behavior of zabbix-epics-py. Monitored PV up-
dates 3 times and its values are stored in the zabbix-epics-
py buffer. As func is set as max, 5 which is the max value
in the buffer is sent to Zabbix server.

We have also developed zetemple [16], which is a wrap-
per software for zabbix-epics-py. Zetemple determines PV
names from item keys in Zabbix template registered to host.
Zetemple requires a csv file which specifies host name reg-
istered in Zabbix and prefix of PV name.

IOC Monitoring
To monitor IOC performance, devIocStats [17] is run-

ning on monitored IOC. DevIocStats provides PVs for
CPU utilization, memory usage, number of CA clients and
so on. Values of these PVs are sent to Zabbix. We have ex-
perimentally monitored 32 IOCs. Interval is set as 180 sec-
onds and func is specified to last to send latest PV value.

DevIocStats has heartbeat PV which counts up every
second. IOC might be having problem such as high loading
when heartbeat PV doesn’t update correctly. We have con-
figured a Warning trigger which evaluates heartbeat has in-
creased more than 178 in 180 seconds and also configured
a Disaster trigger which evaluates heartbeat has updated at
least once in 180 seconds.

VISUALIZE PVACCESS RPC DATA ON
GRAFANA

While the data stored in Zabbix are visualized on
Grafana, accelerator data not supported by Grafana are vis-
ualized on dedicated web application or standalone GUI
application at SuperKEKB. Visualizing these data such as
archived PV data or alarm history on Grafana is expected
to provide effective monitoring.

We have developed Grafana datasource plugin and
HTTP / pvAccess API gateway to visualize arbitrary data.
These applications allow to visualize the data from pvAc-
cess RPC servers on Grafana.

PvAccess is the next generation communication protocol
on EPICS 7 and supports the integration of all data into
microservices [18]. We adopt pvAccess RPC to retrieve the
data.

System Architecture
The system architecture of the data visualization is

shown in Fig. 7. The system consists of pvAccess data-
source plugin, HTTP / API gateway and pvAccess RPC
servers.

Figure 7: System architecture of the data visualization sys-
tem for pvAccess RPC data.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

Control System Infrastructure
WEPHA134

1415

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 8: Message flow in the data visualization system. Retrieved data are time series.

Figure 8 shows messages communicated between each
component. Procedure of visualizing data is below:

1. PvAccess datasource plugin on Grafana send a data
retrieval request to HTTP / API gateway.

2. The API gateway converts a HTTP request into a
pvAccess RPC request.

3. PvAccess RPC server send back a response according
to the received request.

4. The API gateway converts the response to a HTTP re-
sponse and send it to the datasource plugin.

5. Grafana visualizes the response data.

Datasource can be added by adding a pvAccess RPC
server which has the predetermined interface.

pvAccess datasource plugin We have developed
General pvAccess Datasource [19], which is a Grafana
plugin to visualize the data retrieved from pvAccess RPC
server. The features of this plugin are as shown below:

• pvAccess RPC channel names for query, annotation
and search are passed from datasource configuration
panel on Grafana.

• Configurable query parameters for each RPC server.
• Show time series data and table data.
The plugin communicates with HTTP / pvAccess API

gateway via HTTP. The arguments sent to the gateway are
time range, parameters for each target data, channel name
and argument labels for RPC.

HTTP / pvAccess API gateway The gateway pro-
vides an API conversion from HTTP to pvAccess RPC. We
have developed gfhttpva [20] as the API gateway supposed
to use with General pvAccess Datasource. Gfhttpva is a
HTTP server using Flask [21] as a web framework. It also
uses pvaPy [22] to communicate with pvAccess RPC serv-
ers.

pvAccess RPC servers PvAccess RPC servers pro-
vide the data to be visualized. Arguments and return values

for RPC are determined by gfhttpva. RPC servers are al-
lowed to use arbitrary arguments while arguments as
shown below are essential:

• starttime: start time of time range.
• endtime: end time of time range.
• entity: string which specify what data to be retrieved.
Labels for essential arguments are arbitrary. The type of

returned value must be NTTable [23] whether time series
data or table data. Returned NTTable value for time series
data must have 3 columns: value, secondsPastEpoch and
nanoseconds. Table data is allowed to include arbitrary col-
umns.

Developed RPC Servers

Example datasource We have developed Example
datasource [24] to return time series data. This RPC server
returns data according to specified starttime, endtime and
entity. The RPC server also supports param1 argument to
specify data parameter.

For example, the server returns sine wave data from 0
degree to 360 degree when the entity is specified as sine
and param1 is specified as 360. Figure 9 shows example
data visualized on Grafana.

Figure 9: Visualized pvAccess RPC sample data. Entities
are set to sine and cos.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

WEPHA134
1416

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

CSS alarm datasource CSS alarm management sys-
tem have been operated at SuperKEKB. We have devel-
oped an RPC server [25] to retrieve current status and his-
tory of CSS alarm information stored in PostgreSQL data-
base. This RPC server supports only table data.

Current status retrieval uses only entity argument. The
entity argument filters alarms by registered group. History
data is retrieved in given time range. Entity argument is
also used to filter by registered group and message argu-
ment is optionally used to filter by alarm message. Figure
10 shows current alarm status on Grafana.

Figure 10: Table of current CSS alarm data. Displayed
groups are MG (LER) and MG (HER).

CONCLUSION
The monitoring system for metrics and logs have been

deployed. Visualized data helps us to understand the cur-
rent and past status of the control system. Notifications of
a system problem from Zabbix allows early response to its
problem.

In order to expand monitoring system, we have devel-
oped EPICS PV monitoring system with Zabbix and data
visualization system with pvAccess RPC and Grafana.
These systems provide consolidated monitoring for various
types of data. We have applied it for monitoring IOC per-
formance and status monitoring such as CSS alarm status.

REFERENCES
[1] Y. Ohnishi et al., “Accelerator design at SuperKEKB”,

Prog. Theor. Exp. Phys., vol. 2013, no. 3, p. 03A011, Mar.
2013. doi:10.1093/ptep/pts083

[2] EPICS, https://epics-controls.org

[3] Zabbix, https://www.zabbix.com

[4] Grafana, https://grafana.com

[5] Zabbix plugin for Grafana,
https://grafana.com/grafana/plugins/alexan-
derzobnin-zabbix-app

[6] Elastic Stack,
https://www.elastic.co/products/elastic-
stack

[7] Luence, https://lucene.apache.org

[8] Channel Access Protocol Specification,
https://epics.anl.gov/base/R3-16/1-
docs/CAproto/index.html

[9] Wireshark, https://www.wireshark.org

[10] cashark, https://github.com/mdavidsaver/cashark

[11] caSnooper,
https://epics.anl.gov/exten-
sions/caSnooper/index.php

[12] ParseCASW,
https://epics.anl.gov/extensions/Par-
seCASW/index.php

[13] zabbix-epics-py, https://github.com/sasaki77/zab-
bix-epics-py

[14] PyEpics, http://pyepics.github.io/pyepics

[15] py-zabbix, https://github.com/adubkov/py-zabbix

[16] zetemple, https://github.com/sasaki77/zetemple

[17] devIocStats,
https://www.slac.stan-
ford.edu/comp/unix/package/epics/site/devI-
ocStats

[18] L. R. Dalesio et al., “EPICS 7 Provides Major Enhance-
ments to the EPICS Toolkit”, in Proc. ICALEPCS'17, Bar-
celona, Spain, Oct. 2017, pp. 22-26. doi:10.18429/JA-
CoW-ICALEPCS2017-MOBPL01

[19] General pvAccess Datasource,
https://github.com/sasaki77/generalpvaccess-
datasource

[20] gfhttpva, https://github.com/sasaki77/gfhttpva

[21] Flask, https://palletsprojects.com/p/flask

[22] S. Veseli, “PvaPy: Python API for EPICS PV Access”, in
Proc. ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp.
970-973.

 doi:10.18429/JACoW-ICALEPCS2015-WEPGF116

[23] EPICS V4 Normative Types,
http://epics-pvdata.sourceforge.net/al-
pha/normativeTypes/normativeTypes.html

[24] pvAccess RPC sample for gfhttpva,
https://github.com/sasaki77/grafana-pvarpc-
sample

[25] CSS alarm datasource,
 https://github.com/sasaki77/cssalmrpc

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

Control System Infrastructure
WEPHA134

1417

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

