
VACUUM CONTROLS CONFIGURATOR:
A WEB BASED CONFIGURATION TOOL FOR LARGE SCALE

VACUUM CONTROL SYSTEMS

TUPHA044

The Vacuum Controls Configurator (vacCC) is an application developed at CERN for the management of large-scale vacuum control systems. The application was developed to facilitate the management
of the configuration of the vacuum control system at CERN, the largest vacuum system in operation in the world, with over 15,000 vacuum devices spread over 128 km of vacuum chambers. It allows non-
experts in software to easily integrate or modify the vacuum devices within the control system via a web browser. It automatically generates data for the configuration of the communication between vacuum
devices and the supervision system, the generation of SCADA synoptics, long and short term archiving, and the publishing of vacuum data to external systems. VacCC is a web application built for the
cloud, dockerized, and based on a microservice architecture. The application is divided into 4 microservices: front end, validation & persistence, exporter, and synchronizer.

OPENSHIFT ROUTER

LOAD BALANCER LOAD BALANCER

Home Page Application monitoring using Prometheus/GrafanavacCC User Interface

LOAD BALANCER LOAD BALANCER

A. Rocha*, I. Amador, S. Blanchard, J. Fraga, P. Gomes, G. Pigny, P. Poulopoulou, C. V. Lima
CERN, 1211 Geneva 23, Switzerland

/ /backend /export /synchronizer

The front end microservice provides the user
interface of the application. It allows users to be
abstracted from the complexity of vacDB, enabling
them to modify vacuum machine parameters that are
required for the export of SCADA and PLC
configuration files.

The single page application is organized following the
React model, where web elements such as pages and
their elements (buttons, tables, forms, etc.) are
hierarchically organized into components.
The components interact with backend services
(validation & persistence, exporter, and synchronizer
microservices) using REST and WebSockets.
WebSockets are used in special cases of long lasting
requests, like the ones in the Exporter microservice,
that need to provide feedback to the UI.

Request data is stored in the application store, using
Redux , that components can access directly.

The validation & persistence microservice is
responsible for providing the interface between other
microservices and vacDB. It achieves that by exposing
RESTful APIs that allow other microservices to
indirectly perform CRUD operations on the database.

 API: exposes REST endpoints for other services to
interact with vacDB.

 Service Layer: handles requests from the API layer,
performs data validation, and when necessary,
combines results from multiple Data Access Object
(DAO) operations to serve API requests.

 Data Access Objects: Provides objects that allow
direct access to vacDB. This layer is implemented
with Spring Data and Hibernate.

 Auditing: Records modifications in the configuration
of the vacuum control system.

 Security: Provides authentication and authorization
services for the entire application, ensuring that only
users with the required privileges are able to perform
database operations.

The Exporter microservice is responsible for
generating the configuration files for both the PLCs
and for the SCADA.

 For each PLC, the exporter generates function block
calls for each vacuum device connected to it, along
with device datablocks; these contain all relevant
information that will allow PLCs to connect and interact
with device controllers.

For the SCADA, the exporter microservice generates
configuration files with the data that will allow the
configuration of all datapoints for every vacuum
device. Each datapoint will be configured with the
archiving settings defined in vacDB, and each
datapoint element that requires communication with a
PLC will be automatically configured to point to its
corresponding memory location.

vacDB

Export Module

Layout DB

Survey DB

SCADA Config

Files

PLC Config

Files

SCADA server

PLCs

DB Editor UI

The purpose of the synchronizer microservice is to
automatically import vacuum data from the Layout DB
into vacDB, ensuring that the official, approved layout
of the vacuum system is reflected in vacDB. The
Layout DB is a CERN-wide database that models the
architecture of CERN’s accelerators. It contains data
concerning most accelerator subsystems, including
RF, beam instrumentation, magnets, cryogenics, and
vacuum.

Users can trigger a differential analysis between
vacDB and the Layout DB. The differences detected in
the analysis are based on the create, update, and
delete operations made on the Layout DB that are not
reflected in the Machine DB, concerning vacuum
sectorizations, and equipment and their attributes
(position, type, and hierarchy). The analysis process
provides users with a list of actions that need to be
performed on vacDB to bring it up to date with the
Layout DB. Users can use the synchronizer service to
automatically perform the suggested updates.

Master DB

LHC DB SPS DB CPS DB

Layout DB

Synchronizer

Metadata

Machine

Instances

The front end and validation and persistence microservices of vacCC are in production since March 2019 and have
completely replaced the vacDB-Editor as the tool for editing the configuration of the control system. Users have
reported a significant increase in productivity using the new interface, which is especially important during the Long
Shutdown 2 of the LHC, where tens of thousands of configuration changes are expected. We are currently in the
validation phase of the exporter microservice, and we expect to complete the development stage of the synchronizer
miroservice on late 2019.
The adoption of a microservices architecture in vacCC brought several advantages. It allowed to split a big problem

into smaller, independent, and more easily manageable pieces of software, where software developers are able to
work simultaneously in the different system components. Future upgrades of vacCC to new technologies can now be
done on a service by service basis, without the need of a big team of software developers uniquely dedicated to
upgrading the whole application at once.

Every change made to the code repository passes
through a pipeline that will build, test, and lint the code. In
case of errors, the pipeline will stop and the developer
will be alerted. Commits pushed to the master branch of
the repository that pass the build, test, and lint stages are
automatically deployed to the staging environment, a
replica of production, where developers can perform
additional testing. After validation in the staging
environment, a tag of the master branch is created, and
developers can trigger an automatic deployment to
production.

push

Build Test Deploy

PROD

PODS

DEV

Lint

API

Service Layer

Data Access ObjectsAuditing

Security

vacDB

User Interface

Components

Application State

(Redux)

Back End

Services

REST

Front End

Front End API

WebSockets

Vacuum, Surfaces & Coatings Group

Technology Department
*andre.rocha@cern.chMOPHA123

	Poster-ICALEPCS-v17.vsdx
	Page-1

