
KUBERNETES FOR EPICS IOCs
G. Knap, T. Cobb, Y, Moazzam, U. Pedersen, C. Reynolds

Diamond Light Source, Oxfordshire, UK

Abstract
EPICS [1] IOCs at Diamond Light Source (DLS) [2]

are built, deployed, and managed by a set of in-house
tools that were implemented 15 years ago. This paper will
detail a proof of concept to demonstrate replacing these
legacy tools and processes with modern industry
standards.

IOCs are packaged in containers with their unique
dependencies included.

Container orchestration for all beamlines in the facility
is provided through a central Kubernetes cluster. The
cluster has remote nodes dedicated to each beamline that
host IOCs on the beamline networks.

All source, images and individual IOC configurations
are held in repositories. Build and deployment to the
production registries is handled by continuous integration.

Development containers provide a portable
development environment for maintaining and testing
IOC code.

INTRODUCTION
The approach presented here has 5 main themes:

1. Containers: package each IOC with its
dependencies and execute it in a lightweight
virtual environment. [3]

2. Kubernetes: centrally orchestrates all IOCs at
the facility [4].

3. Helm Charts: deploy IOCs into Kubernetes and
provide version management [5].

4. Repositories: Source, container and Helm
repositories hold all of the assets required to
define a beamline’s IOCs.

5. Continuous Integration: source repositories
automatically build containers, Helm charts and
deliver them to package repositories.

An initial proof of concept (POC) has been
implemented at DLS on the test beamline BL45P. All the
source code for the proof of concept, plus documentation
and tutorials can be found in the GitHub organization
epics-containers [6].

SCOPE

The POC initially targets Linux IOCs. This includes
IOCs that communicate with their associated devices over
the network, as well as those that connect to local devices
through USB, PCIe etc. It does not include provision for
Operator Interfaces (OPIs) as these vary greatly between
facilities. Future plans include:

1. Support OPIs by having a 2nd container for each
IOC instance that serves OPI files over HTTP.

2. Supporting RTEMS hard IOCs: using a
containerised developer environment shared with
soft IOCs.

3. Support Windows IOC development through a
similar approach to RTEMS.

CONTAINERS
A class of IOCs that connect to a particular class of

device will all share identical binaries and library
dependencies; they will differ only in their start-up script
and EPICS database. Thus containerized IOCs may be
represented as follows:

1. Generic IOC: A container image for all IOCs
that will connect to a class of device.

2. IOC Instance: a Generic IOC image plus unique
instance configuration. Typically the
configuration is a single start-up script only.

This approach means that the number of container
images is kept reasonably low and they are easier to
manage.

Image Layering
Container images are typically built by layering on top

of existing images.
For the POC, an image hierarchy is used to improve

maintainability as shown in Fig. 1 below.

Figure 1: Image hierarchy for the generic IOCs in the
current proof of concept.

EPICS base [7] and essential tools are compiled inside
one image; the most commonly used support modules
(primarily Asyn [8]) and the AreaDetector [9] framework
also have their own images. Generic IOC images are then

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL04

Control System Infrastructure

THBL04

835

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

leaves in the hierarchy and are based upon the appropriate
dependencies.

Images also have internal layering and every layer is
shared between all instances of IOCs, both in image
repositories and at runtime. Fig. 2 shows and example of
this internal layering.

Figure 2: Example of the layered nature of a container
image for the pmac motor controller generic IOC.

Developer Container
To save on resources at runtime, all images are built

using a staged Dockerfile [10]. There are two targets: a
developer target which includes all of the compilers and
tools used to build the runtime assets; and a runtime target
containing the minimum assets to run the generic IOC.

The developer targets are used to provide an
environment for developers to compile and debug the IOC
and its dependent support modules. This provides a
portable development environment and means there is no
need to replicate the tool chain directly on developer
workstations.

KUBERNETES
A central Kubernetes cluster is used to orchestrate the

IOC instances for all beamlines in the facility. It provides
the following functionality that is typically handled by
separate tools:

• Auto start IOCs when servers come up
• Manually Start and Stop IOCs
• Monitor IOC status and versions
• Deploy versions of IOCs to the beamline
• Roll back to a previous IOC version
• Allocate the server which runs an IOC
• View the current log
• View historical logs (via graylog at DLS)
• Connect to an IOC and interact with its shell
• Debug an IOC (by starting a bash shell inside its

container)

Cluster Topology
A single multi-tenant central cluster runs all of the

worker nodes. This provides centralized management of
all beamlines and other services. The High Availability
(HA) control plane has 3 virtual servers distributed across
3 physical servers.

Each beamline has its own physical servers that are
configured as remote worker nodes to the central cluster.
This means that:

1. IOC instances are close to the hardware that they
communicate with, avoiding network
bottlenecks. This is important for high
bandwidth IOCs such as area detectors.

2. IOC instances may be given affinity to a specific
server and communicate directly with hardware
connected to that server (e.g. a USB device)

3. IOC instances reside on the same subnet as the
beamline’s Channel Access (CA) clients and any
network attached devices. This is a requirement
for CA and some network attached devices (see
below).

Each beamline has its own Kubernetes namespace and
user id in which all the IOC instances will run. This
provides isolation between the beamlines.

Container Networking
Containers use namespaces to isolate their use of

system resources. This is an important feature for building
reliable, scalable and secure applications. However,
EPICS IOCs rely on network protocols that may not suit
network isolation because they do not easily pass through
Network Address Translation (NAT). For this reason the
POC foregoes virtual networks and uses the native
networking of the host server.

Channel Access (CA) and pvAccess (PVA) are the
primary protocols for communication between IOCs and
clients. Both protocols require a broadcast in order to
establish initial communication. The broadcast does not
work via NAT to a virtual LAN.

Other protocols between IOCs and devices had issues
with virtual networks. e.g. GigE Vision Stream Protocol
(GVSP) establishes a connection by passing an IP address
and port number in the application layer and therefore
does not pass through a NAT.

Workarounds to the protocol issues were investigated
on a case by case basis but it became clear that the only
reliable solution was to use native networking within a
single subnet. This is a slight concession to security, but is
no worse than traditional IOC deployment. All other
namespaces are applied to IOC containers and they are
isolated from the host in all respects except network.

HELM
The POC supplies a Helm Chart Library that describes

all of the Kubernetes resources required to deploy an IOC
instance to a beamline. Each Beamline has a source
repository that specifies a Helm Chart for each of its IOC
instances. The beamline source need only refer to the

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL04

THBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

836 Control System Infrastructure

Library and supply a few parameters to define the unique
properties of the IOC instance – most notably its start-up
script. The Library has templates for the following
resources:

1. A Deployment [11] which makes sure 1 instance
of the IOC Pod is always running.

2. The Pod [12] is described within the Deployment
YAML. It includes a reference to the Generic
IOC image it uses to launch the container.

3. A ConfigMap [13] which is mounted as a folder
containing the unique configuration for the IOC
instance. This typically contains only a start-up
script.

4. A Persistent Volume Claim [14] which is
mounted to provide persistent storage across IOC
restarts and upgrades. This is used to hold
autosave data.

5. Note that there is no Kubernetes Service [15]
associated with the IOC since it uses native
networking and is addressed via the host’s IP
address directly.

Helm command line functions are used to deploy IOC
instances to a cluster and manage multiple versions of
IOCs within the cluster.

Helm charts may be stored in a registry. For the POC
the registry is provided by the epics-containers GitHub
organization. New versions of IOC Helm charts are
released to the registry and then deployed from it. Fig. 3
demonstrates this release process.

REPOSITORIES
All of the assets required to manage a set of IOCs for a

beamline are held in repositories. Thus all version control
is done via these repositories and no shared file-systems
are required. The classes of repository are as follows:

1. Beamline Source: (1 per beamline) holds the
source for Helm charts for each IOC instance.
Also hosts the continuous integration (CI) steps

to generate Helm charts and publish them to the
Helm repository.

2. Container Image Source: (1 per Generic IOC)
holds the Dockerfile that describes the contents
of a Generic IOC. Also hosts the CI to generate
an image from the Dockerfile and publish to the
image repository.

3. Helm Repository: (1 per IOC Instance) holds
the published IOC Instance Helm Charts ready
for deployment to Kubernetes.

4. Image Repository: (1 per Generic IOC) holds
the Generic IOC container images and their
dependencies.

CONTINUOUS INTEGRATION
All published assets in this process are generated via CI

(see Repositories above). Every published asset has its
own version number and its own source repository. When
releasing an asset the developer will version tag the
source repository. This causes the CI to build the source,
publish the result and tag it with the same version
number.

The POC uses GitHub Actions [16] to implement its CI
and publishes assets to GitHub Packages [17]. However,
during development GitLab CI [18] and Google Container
Registry [19] were also tested.

CONCLUSION
The POC demonstrates that it is possible to deploy and

manage IOCs for a beamline using only standard open
source tools such as Kubernetes, Helm and GitHub. The
test beamline BL45P has successfully deployed its IOCs
using this approach and required no custom software or
scripts to do so.

DLS will continue to develop this approach as a
possible site wide solution. The epics-containers GitHub
organization will be continuously updated to track
progress. The organization is also available for
contribution from EPICS developers at other sites.

Figure 3: Example of a motion IOC (bl45p-mo-ioc-01) showing how the generic IOC image is built up, packaged with
deployment details into a Helm chart, and then deployed to a Kubernetes node.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL04

Control System Infrastructure

THBL04

837

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

REFERENCES
[1] EPICS, https://epics-controls.org/

[2] R. P. Walker, “Commissioning and Status of the Diamond
Storage Ring”, in Proc. 4th Asian Particle Accelerator
Conf. (APAC'07), Indore, India, Jan.-Feb. 2007, paper
TUYMA03, pp. 66-70.

[3] Open Container Initiative,
https://opencontainers.org/

[4] Kubernetes, https://kubernetes.io/

[5] Helm Charts,
https://helm.sh/docs/topics/charts/

[6] EPICS Containers,
https://epics-containers.github.io

[7] EPICS Base,
https://epics-controls.org/resources-and-support-
/base/

[8] EPICS Asyn,
https://epics-controls.org/resources-
and-support/documents/howto-documents/
device-support-asyn-driver/

[9] EPICS areaDetector,
http://cars9.uchicago.edu/software/epics
/areaDetector.html.

[10] Staged Docker Builds,
https://docs.docker.com/develop/develop-images
/multistage-build/

[11] Kubernetes Deployment,
https://kubernetes.io/docs/concepts/workloads
/controllers/deployment/

[12] Kubernetes Pod,
https://kubernetes.io/docs/concepts/workloads
/pods/

[13] Kubernetes Config Map,
https://kubernetes.io/docs/concepts/configura
tion/configmap

[14] Kubernetes PVC,
https://kubernetes.io/docs/concepts/storage/
persistent-volumes/

[15] Kubernetes Service,
https://kubernetes.io/docs/concepts/services-
networking/service/

[16] GitHub Actions,
https://docs.github.com/en/actions

[17] GitHub Packages,
https://docs.github.com/en/packages

[18] GitLab CI, https://docs.gitlab.com/ee/ci/

[19] Google Container Registry,
https://cloud.google.com/container-registry

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL04

THBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

838 Control System Infrastructure

