
NOTIFICATIONS WITH NATIVE MOBILE APPLICATIONS
B. Bertrand∗, J. Forsberg, MAX IV, Lund, Sweden

E. Laface, G.Weiss, European Spallation Source ERIC, Lund, Sweden

Abstract
Notifications are an essential part of any control system.

Many people want to be notified of specific events. There are
several ways to send notifications: SMS, e-mails or messag-
ing applications like Slack and Telegram are some common
ones. Those solutions frequently require some central con-
figuration to record who will receive messages, which is
difficult to maintain. ESS developed a native mobile applica-
tion, both for iOS and Android, to manage notifications. The
application allows the users to subscribe to the topics they
are interested in, removing the need for a central configura-
tion. A web server is used as gateway to send all notifications
following Apple and Google protocols. This server exposes
a REST API that is used both by clients to send messages and
mobile applications to retrieve and manage those messages.
This paper will detail the technical implementation as well
as the lessons learnt from this approach.

INTRODUCTION
The European Spallation Source (ESS) is under rapid

development in Lund, Sweden. More and more parts of the
control system are put into place, which means a growing
number of messages and alarms are triggered. People want
to be notified to keep track of what is happening and to know
if any action is required. There were several ways to send
notifications depending on the application. IT had a service
to send SMS, some applications were relying on e-mails.
We also developed Telegram and Slack bots. The Telegram
bot was quite popular as users could check messages on
their phone via the native mobile application. The issue was
that the configuration was centralized: each new user had to
be added manually with the list of topics he was interested
in. That was demanding to maintain and didn’t scale well.
The other problem was the inclusion in existing applications
which wasn’t trivial. We wanted a general purpose solution
that would be easy to use from any application and would
unify the user experience.

CONCEPTS
We wanted users to be able to subscribe themselves to

the notifications they are interested in. This would remove
the need for a central configuration that is laborious to man-
age. To achieve this, notifications have to be grouped in
categories named services. The number of services doesn’t
have any limit in theory. In practice, too many services
would make it difficult to decide which to subscribe to. With
too few services, there is a risk that the user will receive
many unwanted notifications. Some services used at ESS
are called Logbook On-Call, Logbook TS2, OpenXAL and
∗ benjamin.bertrand@maxiv.lu.se

Prometheus CSI. Those examples show that a service can
be linked to an application (like OpenXAL), but that one
application can also send messages to different services (like
the LogBook).

Smartphones are part of an infrastructure that makes it
easy to dispatch notifications. We chose to develop a specific
mobile application that we could customize to our need.
This application would be used to subscribe to the services,
receive notifications and read messages. Two clients are
available, one for Apple iOS devices [1] and one for Android
users [2].

Sending notifications to a mobile phone can be done re-
lying on Apple and Google infrastructure. We decided to
design a REST API that is used both to communicate with
the mobile clients and to forward the notifications received
from the system. Sending a notification only requires a POST
to this central server, named Notify server [3], making the
integration in existing application simple.

NOTIFY SERVER
The Notify server was developed with FastAPI [4], an

async Python web framework, that quickly became very pop-
ular in the past years. It is based on Starlette [5], a lightweight
ASGI framework, and Pydantic [6], a data validation library
using python type annotations. PostgreSQL [7] is used as
database. FastAPI was designed to make writing API easy
and is based on OpenAPI standard [8]. It automatically gen-
erates an interactive API documentation with exploration
via Swagger UI [9]. This interface, showed in Fig. 1, is used
by admin users to perform basic operation, like creating new
services.

Message Sending
As described earlier, a notification has to be linked to a

service. Only admin users can register a new service. When
creating a new service, an UUID is generated and used to
identify the service. This id has to be used by clients to
send a notification associated to that service. This is done by
sending a POST to /services/{service_id}/notifications with
the fields title, subtitle and url in the body. Only the title
is required. Other fields are optional. The subtitle usually
contains a longer description. The URL can be used to
redirect to a specific website, like a LogBook entry, to have
more details. This link will make the messages clickable in
the mobile app. Figure 2 and Figure 3 show how to send a
notification using curl or Python.

As there is no authentication, a filtering based on IP ad-
dress is performed to avoid receiving messages from an
untrusted source. Once received, the message is forwarded
to all users who subscribed to this service using Apple and
Google push infrastructure.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV011

User Interfaces and User eXperience (UX)

THPV011

883

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 1: Notify server API

Figure 2: Sending a notification with curl

Figure 3: Sending a notification from Python

Communication with Mobile Clients
Mobile clients need to authenticate to access the REST

API. To login, username and password are sent to the server
and checked against an Active Directory service. If the
credentials are correct, the server sends back a JSON Web
Token (JWT). This token shall be included in the header of
any future request. It is valid for a limited number of days
and the user will only be forced to authenticate again when it
has expired. This solution allows to not store any credentials
in the phone or server.

Once logged in, the mobile app can use the API endpoints
to get the list of services, subscribe or unsubscribe and read
notifications linked to the current user. For notifications to
be sent to that phone, the app must send a token to identify
the device. This is done via the /users/user/device-token end-
point. This device token is associated to the user and saved
on the server. This is the token used to send notifications
via Apple or Google services.

The workflow to send a notification is depicted in Fig. 4:

1. An application sends a message to the Notify server
(the message is linked to a service).

2. The server sends a notification to both Apple Push
Notification service [10] and Firebase Cloud Messaging
[11] (depending on the device token type) for all users
who subscribed to that service.

3. The notification is sent by Apple and Google cloud
services to the user device.

4. When the user opens the notification, the full message
is read from the Notify server API.

Figure 4: Notification workflow

The Notify server is deployed using docker in a Virtual
Machine at ESS and on Kubernetes at MAX IV. All site
specific parameters can be defined in a configuration file.

APPLE IOS CLIENT
The iOS client is a GUI for the REST API described pre-

viously. Once installed it will contact the server through
a link that is hard coded in the application. In our current
version we support two possible links and customizations,
one for ESS server and one for MAX IV server as in Fig. 5.
As described previously, upon successful login a JSON Web
Token is stored in the app and will be used for future authen-
tications.

The app will also ask the user to accept notifications and
in case of an affirmative answer it will request to Apple a
push token that is sent to the Notify server. This token is
stored in the profile of the user and used to push any new
notification to the phone through the Apple Push notification
API.

Once the app is properly registered on the server the avail-
able services can be selected for subscription (Fig. 6). The
app will communicate to the server which service the user
wants to subscribe to and the server will associate the push
token of the user to the service. In this way every time a new
message is delivered to a service, all the subscribers will be
notified about the new message (Fig. 7).

When the app is opened, the main screen will display the
list of available notifications (Fig. 8a), these are downloaded
from the server at every startup of the app or if a new noti-
fication arrives and the app is running on the phone. The
notifications are marked with a red dot if unread, and a badge

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV011

THPV011C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

884 User Interfaces and User eXperience (UX)

(a) ESS (b) MAX IV

Figure 5: Login Screen

Figure 6: Services

with the number of unread notifications is shown on the icon
of the app. The top bar of the notification contains the name
and the color of the service that is notifying, and on the right
corner there is a button with a link to the URL sent together
with the message, if present.

Tapping on a notification is possible to expand the text
and read the full content (Fig. 8b).

Deployment
To be able to send push notifications to an Apple device

the developer needs to request a push key that has to be used
in order to send the notifications to the app. This is the reason
why we developed a unique app with two possible logins
(ESS and MAX IV), because in this way we can use the
push key registered under the ESS license to push messages
also from MAX IV. The alternative is that MAX IV register

Figure 7: Push notification alert

(a) Messages list (b) Single message view

Figure 8: Main Screen

its own developer on the developer program of Apple and
requests a key for push notifications that is set in the Notify
server settings. This is under consideration for the future.

Apple offers multiple way to deploy applications. The
most common way is to use the App Store, but our applica-
tion has an access restriction to the users of ESS and MAX
IV and Apple forbids the distribution of restricted applica-
tions on the App Store. The solution that we adopted to
distribute the app is then through the Mobile Device Man-
agement (MDM) system. The whole process is exactly like
to distribute the app through the App Store, it means that the
app must be signed with the distribution signature generated
on the Apple Developer portal and sent to the App Store
Connect, that is the website that Apple uses to manage the
distribution of apps. Once the app is on the portal and all
the relevant information for distribution are filled, the app is

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV011

User Interfaces and User eXperience (UX)

THPV011

885

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

sent to Apple for review as Private. A normal app in general
is sent as public, but because we do not go to the App Store
but we will stay within our MDM, the app has to be marked
as private.

Apple will then verify the application running it, this
means that together with the app they will require a demo
account to test the functionalities, so we created in our LDAP
server a test account that we enable every time we submit
a new revision of the app for approval. After the checks
of Apple the application is marked as Ready for Sale and
appears automatically to the registered Business web page
connected to our license for distribution. For ESS we use
the Self Service application to distribute internal apps.

This process, except the push key that is always the same,
has to be repeated for each version of the app submitted to
Apple.

ANDROID CLIENT
The Android client was initially developed after the iOS

counterpart, consequently the functionality and user inter-
face (UI) were copied to be basically identical. Some minor
difference in the UI layout exist, though. Figure 9 shows the
lock screen showing a test notification message.

Figure 9: Push notification alert

The Android client does not support selection between
ESS and MAX IV, it currently only supports the ESS use
case. To be used at MAX IV, the application was recompiled
after changing the Notify server url. This was enough for
testing purpose. More customization is planned to make the
theme MAX IV specific.

The current code base of the Android client requires a
minimum version of Android 7.0, which was released August
2016.

Deployment
Development of Android apps is free of charge, as are de-

velopment tools. Installing an Android app by downloading

an apk (Android application PacKage) file to any compatible
target device - or using USB tethering - is possible and does
not incur any limitations to the app usage. ESS has however
opted for distribution over Google Play due to its simplic-
ity. The Google Play approval process is slightly simpler
compared to the process used by Apple, e.g. there is no test
account needed in order for Google to be able to login to the
application. This distribution will be considered by MAX
IV when the app is customized.

In order to publish apps on Google Play one needs to
register a developer account, currently priced at $25 (one-
time charge). The developer account must be linked to a
Gmail account.

APPLICATION INTEGRATION
As we saw earlier, sending a notification only requires

a POST request to the Notify server. ESS integrated this
system in several applications: LogBook, OpenXAL, EPICS
alarms and Prometheus are some examples. Integration can
be done in different ways depending on the application. For
Prometheus, a bridge [12] was created to forward and cu-
rate messages from the Alert manager to the Notify server.
EPICS alarms are sent via Kafka, which makes it quite flexi-
ble. A client is used to listen to the desired Kafka topics and
forward alarms to the server. At MAX IV, preliminary tests
were performed successfully with Achtung, a new alarm
management system for Tango.

CONCLUSION
The solution put in place at ESS relies on modern tools

and native mobile applications for both iOS and Android.
The management of who will receive notifications is dele-
gated to the users themselves, which removes the need for
a central configuration that can be fastidious to keep up to
date. This is really beneficial to the users who can subscribe
and unsubscribe as they want, from their phone. It gives an
unified way to receive notifications from different systems.
The implementation is generic and can be re-used. The No-
tify server was straightforward to deploy at MAX IV and the
concept was tested successfully. The customization of the
mobile clients requires a bit more work but nothing major.

REFERENCES
[1] E. Laface. (2021) Notify iOS Client. https://gitlab.

esss.lu.se/ics-software/ess-notify

[2] G. Weiss. (2021) Notify Android Client. https://gitlab.
esss.lu.se/ics-software/ess-notify-android

[3] B. Bertrand and E. Laface. (2021) Notify Server. https:
//github.com/EuropeanSpallationSource/notify-
server

[4] S. Ramírez. FastAPI. https://fastapi.tiangolo.com

[5] T. Christie. Starlette. https://www.starlette.io

[6] S. Colvin. pydantic. https://pydantic-docs.
helpmanual.io

[7] PostgreSQL. https://www.postgresql.org

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV011

THPV011C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

886 User Interfaces and User eXperience (UX)

[8] OpenAPI standard. https://github.com/OAI/OpenAPI-
Specification

[9] Swagger UI. https://github.com/swagger-
api/swagger-ui

[10] Apple Push Notification service. https://developer.
apple.com/documentation/usernotifications/
setting_up_a_remote_notification_server/

sending_notification_requests_to_apns/

[11] Firebase Cloud Messaging. https://firebase.google.
com/docs/cloud-messaging

[12] A. Curri. (2021) Alertmanager To Ess Notify. https:
//gitlab.esss.lu.se/ics-infrastructure/
alertmanager-to-ess-notify

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV011

User Interfaces and User eXperience (UX)

THPV011

887

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

