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Abstract
Neutron scattering facilities, such as Oak Ridge National

Laboratory (ORNL) and the NIST Center for Neutron Re-
search, provide a source of neutrons to investigate a wide
variety of scientific and technologically relevant areas, in-
cluding material science, chemistry, biology, physics, and
engineering. In these experiments, the quality of the data
collected is sensitive to sample and beam alignment. This
alignment changes both between different samples and dur-
ing measurements. The sample alignment optimization pro-
cess requires human intervention to tune the beam and sam-
ple positions. While this procedure works, it is inefficient,
time-consuming, and often not optimized to high precision
alignment. This paper uses different neural network archi-
tectures on neutron camera images from the HB-2A powder
diffractometer beamline at the High flux Isotope Reactor
(HFIR) and optical camera images from the TOPAZ sin-
gle crystal diffractometer at the Spallation Neutron Source
(SNS), both at ORNL. The results show that the trained net-
work on a few images accurately predicts the sample position
on holdout test images. The resulting surrogate model can
then be used via feedback-driven adaptive controls to tune
the experimental parameters to get the desired beam and
sample position.

INTRODUCTION
Neutron scattering experiments probe the structure and

dynamics of materials to provide unique insights into phys-
ical, chemical, nanostructured, biological and engineering
materials science. At present the US Government operates
two premier neutron scattering user centers [1]; one at Oak
Ridge National Laboratory and one at the NIST Center for
Neutron Research. These large scale facilities offer flagship
research capabilities to academia and industry that serve a
broad and growing user community which necessitates their
improved operational efficiency and capacity. The experi-
ments involve collecting data on samples in a neutron beam
on highly optimized neutron instruments. The position of
the sample in the beam is often critical to the subsequent data
analysis and measurements success, however the need to per-
form sample alignment and realignment during experiments
reduces the amount of time spent collecting data. While
there have been efforts to improve sample alignment [2] and
to automate switching between samples [3, 4], manual inter-
vention from facility beamline scientists or expert users is
still necessary. At present optimization of the experimental
environment requires a facility beamline scientist or expert
user to interpret image data of the sample either through an
∗ diaw@radiasoft.net

optical camera or a neutron camera. A correction is then
applied manually based on the data from these images until
the sample is aligned in the beam. The automation of this
process will result in more efficient and accurate use of neu-
tron facilities and therefore increase the overall quality and
reliability of their scientific output. During our studies we
have focused on developments for two experimental stations,
the HB-2A neutron powder diffractometer and the TOPAZ
neutron single crystal diffractometer.

The HB-2A neutron powder diffractometer (as shown in
Fig. 1) is located at the High Flux Isotope Reactor at ORNL
and is primarily utilized for magnetic structure determina-
tion while focusing on experiments at ultra-low temperatures
with the options of high external fields or applied pressures.
The constant energy neutron beam in a low noise environ-
ment and a simple incident beam profile makes HB-2A well
suited to a variety of interchangeable environments with
minimal calibration required. There are a variety of sample
changer options that can allow multiple samples to be loaded
at a time. With a focus on weak magnetic signals the sam-
ple alignment and beam optimization with adjustable slits
and sample stage motors is crucial to reducing unwanted
background scattering and to maximise the sample signal.
With further optimization of the beamline to include a new
detector count rates would increase by over an order of mag-
nitude, resulting in a significant increase in the number of
samples being run, further motivating the advancement of
automated sample alignment. For more details about the
HB-2A instrument and scientific applications see [5].

Figure 1: The HB2A powder neutron diffraction instrument.
The sample and detector area is shown on the left, with the
neutron camera behind the sample. Middle shows a standard
sample holder that the powder sample is loaded into, with
the scale shown in millimeters. An example of a neutron
image is shown on the right, with the powder appearing as a
shadow-like image in the white beam.
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Figure 2: TOPAZ neutron single crystal diffraction instru-
ment. (a) The sample and detector area is shown as viewed
from above the instrument. (b) Top image shows the sample
goniometer arm. Samples are loaded on pins and attached
to the end of the arm. The middle and bottom images show
images of the samples attached to sample mounts.

The TOPAZ neutron single crystal diffractometer (as
shown in Fig. 2) is located at the Spallation Neutron Source
at ORNL and offers high resolution measurements of crystal
structures in small sample volumes. The smallest crystals
studied to date in this instrument are 0.065 mm3 in size.
TOPAZ has recently been upgraded to include the instal-
lation of a focusing high-flux neutron guide end-section.
This enables routine measurements of sub-millimeter crystal
samples. TOPAZ is also capable of continuous 3DQ-space
mapping for a specific region of reciprocal space volume
given a stationary single-crystal sample. This is particu-
larly useful when studying phase transitions as a function
of temperature or other external stimuli. TOPAZ possess
state of the art data acquisition and reduction tools making
it one of the more advanced neutron scattering end stations
available for users. These capabilities, however, are under
utilized in part due to limited temperature range and manual
alignment of the sample in the environment. Improved tools
for automatic sample alignment and stabilization promise
to increase the throughput of the detector and therefore in-
crease its net scientific output. For more specifics about the
TOPAZ diffractometer and other diffractometers at ORNL
see [6].

The two neutron beamlines HB-2A and TOPAZ use differ-
ent methods to image the sample and optimize the alignment.
HB-2A uses a neutron camera that is placed in the neutron
beam after the powder sample. The sample and any ancil-
lary equipment that are in the neutron beam appear as a
shadow in the beam, with the contrast varying depending on
the neutron absorbing characteristics of the material. The
beam size has a maximum of 20 mm × 60 mm (Horizontal× Vertical) and the samples are typically enclosed within
a cylindrical can ∼ 60 mm tall with diameters in the range
4–15 mm. The target sample alignment is to center the sam-

ple in the beam horizontally and vertically, translate to the
center of the detector arc to ensure reliable data quality and
to mask out any unwanted beam not hitting the sample that
would add unwanted background scattering. For the TOPAZ
diffractometer, centering of samples in the neutron beam is
accomplished via an optical camera. The sample sizes are
in the mm to sub mm size, with a beamsize of 2.0–4.0 mm
in diameter. The sample shape and dimension are often ir-
regular and can vary significantly between samples. To view
the sample a video camera is installed below the sample
and individual images or series of images with respect to
a marked beam center position are recorded. The sample
is aligned remotely using a software algorithm. All associ-
ated metadata and beamline configuration data are recorded
and associated with the image. This alignment procedure is
done both at the start of the experiment when a sample is ini-
tially installed and after the sample temperature has changed
which results in a non-trivial alteration of the sample po-
sition due to thermal expansion/contraction of the sample
environment. Temperature changes can occur multiple times
per experiment.

Machine learning has recently been of interest for a range
of automation tasks in particle accelerators [7, 8] and exper-
imental end stations [9, 10]. Convolutional neural networks
are of particular interest due to their ability to efficiently
process image data [11, 12]. Here we will detail the pro-
totyping and testing of new machine learning methods for
sample alignment and stabilization of samples at neutron
scattering beamlines. Our approach employed the use of con-
volutional neural networks to either relate diagnostic images
to a series of machine settings in operational experiments
or reconstruct a binary image outlining the sample. These
algorithms can then be used during neutron experiments in
conjuction with a feedback algorithm to stabilize samples
in the beam. This paper provides an overview of our recent
efforts to build convolutional neural networks to assist with
the automation of sample alignment in neutron beamlines.

METHOD AND RESULTS
We focus on designing an efficient approach to dealing

with images of different samples obtained during the neutron-
scattering experiment.

First, we consider the HB2A dataset. Figure 1 shows an ex-
ample of the neutron camera image with the powder appear-
ing as a shadow-like image in the white beam. Our dataset

Figure 3: Left: Training an validation loss function at each
epoch. Right: the coefficient of determination 𝑅2 for each
of the 9 motor parameters.
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Figure 4: Test of the CNN surrogate performance in the test
dataset. Each plot title corresponds to a different instrument
motor that can control sample position and beam size. On
the 𝑥-axis we have the data from the experiment, 𝑦-axis
represents the model prediction.

consisted of a collection of 530 images sized 480 × 640 × 4
and 9 relevant motor parameters such as smpl_stk to se-
lecting the motor position for a sample, stu to translate the
sample horizontally in the beam or slit_pre_tp to control
the beam size with motorized slits. Our focus was to find a
surrogate model that can take a neutron image and predict
the motor parameters. This was accomplished using vanilla
convolutional neural networks implemented in keras [14].
These structures are well suited for extracting scalar quan-
tities from image data. The CNN consists of a series of4 × 4 convolution layers. Each layer comprises three types
of operations: convolution, rectified linear units, and batch
normalization. A dropout of 0.25 is applied between layers
and there is a dense layer (256) after the last convolution.
A network was trained to learn the behavior of a dataset;
this means fine-tuning each layer’s parameters (weights and
biases) to produce a valid model. We employ a conventional
formulation based on the minimization of a loss function 𝐿
with the mean-squared error:

𝐿 = 1𝑛batch
∑𝑠,𝑡 ( ̂𝑋𝑡𝑠 − 𝑋𝑡𝑠)2. (1)

Here 𝑠 loops over the training examples, and 𝑡 runs over
training targets. ̂𝑋𝑡𝑠 is the t-th image for example 𝑠, and 𝑋𝑡𝑠 is
the output of the t-th neuron in the last layer of the network,
and where 𝑛batch is the batch number. We minimize this
output by accelerated gradient descent with Adam optimizer
with a learning rate set to 𝑙𝑟 = 10−4 in a series of epochs.

Figures 3 and 4 illustrates the network performance.
For each motor position, the coefficient of determination𝑅2 > 0.9, indicating that the training approach yields robust
surrogate models.

Although we successfully trained a network on the dataset,
the inverse problem of predicting a sample position from the
CNN model using the machine setting parameters did not
yield good results. Much of this is related to the degenerate

Figure 5: The proposed U-net architecture uses a contraction
and an expansion paths. The blue boxes represent multi-
channel feature map while the white boxes are their copies.
The gray arrows correspond to the operations from left to
right. This figure was taken from Ref. [13].

nature of the system. This limits our ability to provide a
feed-forward adjustment to the motors based on a neural
network model. An alternative approach is to identify the
sample position from the image and use feedback on the
motors to position the sample. This sample identification
approach was applied to the Topaz dataset using a slightly
different architecture.

For the Topaz data, our problem is as follows: Given
an image, localize sample position in the image and return
the center of the mass of the sample. To do so, we trained
a convolution neural network based on the segmentation
algorithm 2D-U-net [13]. The U-net architecture shown
in Fig. 5 consists of contracting and expansive paths and
overall has 23 convolutional layers. For the contracting
layer, a vector input 𝑦 is passed to two 3x3 convolutions,
each followed by an activation unit, and produces a vector
of activations, 𝑦′, via

𝑦′ = 𝑓 (𝑊𝑦 + 𝑏), (2)

Figure 6: Learning curve. Training and validation loss at
each epoch.
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Figure 7: Examples images obtained from the experiment. The lower plots show binary image masks created around the
sample. For images with no sample the mask is empty.

Figure 8: Test model performance for some random images in the test dataset. Top row are the test image (ground truth),
middle row: the test image label, and bottow row are the predicted test binary by the U-net algorithm. The predicted test
image is visually identical to the ground truth.

where 𝑊 is a weight matrix, 𝑏 is a bias vector, and 𝑓 is an ac-
tivation function. We choose the rectified linear unit (ReLU)
function 𝑓 (𝑠) = max(0, 𝑠). Then, we introduce a downsam-
pling layer consisting of 2 × 2 max pooling operation with
stride 2. The downsampling factor was set 2 at each step
while the number of feature channels doubles. For the ex-
pansive path, we have an upsampling operator of the feature
map. A 2 × 2 convolution is employed to reduce the number
of feature channels and two 3 × 3 convolutions. After the
last convolution layer, we applied a 1 × 1 convolution to map
each 64-component feature vector to produce the desired
clean image.

Our training dataset is composed of images and the
corresponding masks (binary), where each image of size964 × 1292 has either a sample or no sample, as shown in
Fig. 7. Because these images are extremely large, we resized
them to 128 × 128 before applying them to the network. Al-
though this procedure may introduce artifacts in the sample
images, it did not seem to impact the result of the training.
The dataset consists of 611 images, and it was obtained by
randomly varying the parameter settings of the optical cam-
era images from the TOPAZ single crystal diffractometer.
All model evaluation was carried out using a hold-out 20%
validation set, which contains no overlap with the training
set. We used a formulation based on the cross-entropy loss
function. This latter is minimized by accelerated gradient
descent with the Adam optimizer in a series of epochs, that
is, passes over the entire training dataset, using a learning
rate of 10−3 and batches of size 𝑛batch = 32. A patience-
based learning scheduler is used to stop the training and
revert to the last best network if the validation loss does not

improve over 𝑛patience = 10 epochs, with a global termina-
tion of 𝑛epochs = 500 at maximum. Figure 6 illustrates the
training and validation loss error. The network terminates
within few epochs (∼ 50).

Finally, Fig. 8 shows random samples from the ground
truth data, their labels, and corresponding predictions ob-
tained using our surrogate model, demonstrating that the
u-net approach captures details very accurately across the
sample types.

CONCLUSION
Machine learning tools are promising for the increased

automation of neutron beamlines. We have shown the ability
for convolutional neural networks to predict motor positions
from images in the HB-2A beamline and to contour the sam-
ple for optical images collected from the TOPAZ beamline.
Using the output of the U-net architecture we can compute
the center of mass of the sample and hand that off to the mo-
tor controllers in order to maintain sample alignment during
the experiment.
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