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Abstract 
The Continuous Electron Beam Accelerator Facility 

(CEBAF) at Jefferson Laboratory is a CW recirculating 
linear accelerator (linac) that utilizes over 400 
superconducting radio-frequency (SRF) cavities to 
accelerate electrons up to 12 GeV through 5-passes. Recent 
work has shown that given RF signals from a cavity during 
a fault as input, machine learning approaches can 
accurately classify the fault type. In this paper, we report 
initial results of predicting a fault onset using only data 
prior to the failure event. A dataset was constructed using 
time-series data immediately before a fault (“unstable”) 
and 1.5 seconds prior to a fault (“stable”) gathered from 
over 5,000 saved fault events. The data was used to train a 
binary classifier. The results gave key insights into the 
behaviour of several fault types and provided motivation to 
investigate whether data prior to a failure event could also 
predict the type of fault. We discuss our method using a 
sliding window approach. Based on encouraging initial 
results, we outline a path forward to leverage deep learning 
on streaming data for fault type prediction. 

INTRODUCTION 
The Continuous Electron Beam Accelerator Facility 

(CEBAF) at Jefferson Lab is a high power, continuous 
wave recirculating linac servicing four different 
experimental nuclear physics end stations [1]. CEBAF 
completed an energy upgrade in 2017 with a goal of 
effectively doubling its energy reach from 6 GeV to 12 GeV. 
The upgrade required the installation of 11 additional 
cryomodules, named C100s denoting their capability for 
providing 100 MV of energy gain. A schematic of CEBAF 
with locations of the new C100 cryomodules is provided in 
Figure 1. Each cryomodule is composed of 8 
superconducting radio-frequency (SRF) cavities. In 
addition, a digital low-level radio frequency system 
(LLRF) is implemented to regulate the new cryomodules.  

CEBAF experiences frequent short machine downtime 
trips caused by SRF system faults, particularly when the 
cavity gradients are pushed to their upper limits. A 
significant portion of the SRF system faults occur within 
the C100 cryomodules. Consequently, a data acquisition 
system is implemented to record data from these 
cryomodules to investigate the nature and the origin of the 
SRF faults. The system is configured to record time-series 

waveform data when any of the C100 cavities fault. These 
recorded waveform data are analyzed by a subject matter 
expert (SME) to determine the cavity that caused the trip, 
and the type of fault. In previous studies we have 
investigated the possibility of using artificial intelligence 
(AI) techniques to automate this highly tedious waveform 
analysis process [2, 3]. It is quite helpful to expedite the 
beam recovery process with fast automated cavity fault 
identification after an event. However, it may be further 
beneficial to investigate the possibility of using AI to 
predict RF failures beforehand in order to reduce certain 
faults from occurring. While the data acquisition system is 
being upgraded for compatibility with such predictive 
models, we conduct a feasibility study for RF fault 
prediction using currently available data.          

CAVITY FAULT CLASSIFICATION 
The cavity fault classification is posed as a supervised 

machine learning (ML) problem, with ground truth fault 
labels for recorded data provided by SMEs. The data used 
for the classification task is the full time-series waveforms 
pertaining to each fault event recorded by the data 
acquisition system. The entire time-series waveform 
represents approximately 1638.4 ms (from t = −1536 ms to 
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Figure 1: CEBAF schematic with locations of C100 cry-
omodules. 
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t = +102.4 ms) comprised of both pre-fault and post-fault 
signals as shown in Figure 2. Waveforms are sampled at a 
constant rate of 5 kHz. We record 17 different RF signals 
from each C100 cavity, and a selection of these are used 
for analysis. In effect, the classification task uses both pre-
fault and post-fault waveforms to identify the cavity that 
failed and the type of fault in a given cryomodule. Detailed 
discussions on the classical ML and deep learning (DL) 
models developed for cavity fault classification and 
associated performance characteristic can be found in [3, 
4]. Table 1 summarizes the performance of ML and DL 
models for cavity fault classification with testing data. The 
best performing ML models are deployed within CEBAF.         

Table 1: Cavity and Fault Type Classification Accuracy 

 Cavity 
Identification 

Fault  
Classification 

ML Model (%)  88.0 86.9 
DL Model (%) 87.8 81.3 

 
Note that the classification task exploits both pre-fault 

and post-fault data to achieve the model accuracy shown in 
Table 1. However, a fault prediction model can only utilize 
data prior to a fault event to make predictions on an 
impending fault. Moreover, fault prediction must be 
performed at the cavity level as prediction of a fault would 
inherently identify the associated cavity. We therefore 
conduct the feasibility study for fault prediction as a two-
step process as follows: 1) we define a binary classification 
task to identify waveforms describing impending faults, 
and 2) a moving window based multi-class classification 
task to predict the type of failure before onset.  

BINARY CLASSIFICATION TASK 
Binary classification task is designed to investigate the 

possibility of distinguishing waveforms representing 
imminent faults from waveforms representing stable 
running conditions.  

Dataset 
The dataset utilized for this study consists of a total of 

5,047 fault events. Table 2 summarizes the dataset compo-
sition with respect to fault types.  
 

Table 2: Fault Prediction Dataset 

Fault Type Number of Events 
Single Cavity Turn Off 885 

Microphonics 710 
100 ms Quench 608 
Controls Fault 847 

 Electronic Quench 673 
3 ms Quench 542 

Heat Riser Choke 720 
Unknown 62 

 
The current data acquisition system is set up to collect 

data only in the event of a RF cavity trip (see Figure 2). 
Note that approximately 94% of the captured waveform (t 
< 0) represents pre-fault activity, with t = 0 the fault onset, 
and t > 0 the post-fault data. Therefore, we utilize 100 ms 
segments extracted from the waveforms to represent stable 
running and impending fault classes as follows: for stable 
running, extract a 100 ms segment from the earliest 
possible window of the captured waveform (annotated as 
“Stable running” in Figure 2, with a window of [−1536 ms, 
−1436 ms]). Segments of this region are verified by SMEs 
as sufficient representations of stable running conditions. 
For the impending fault, we extract a 100 ms window as 
close as possible to the fault onset (annotated as 
“Impending fault” in Figure 2). Accordingly, we extract 
impending fault segments with a window of [−105 ms, −5 
ms], with a 5 ms buffer to ensure that fault onset activity is 
not inadvertently captured. As a result, for the binary 
classification task we obtain 5,047 examples. Additionally, 
we retain labels of the underlying fault type in the 

 
Figure 2: Waveform captured by the data acquisition system. The total duration of the waveform is 1.64 seconds. 
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waveforms representing the impending fault phase to 
perform a follow-up analysis on the feasibility of 
predicting fault types.   

Prediction Model and Training 
We develop a deep recurrent neural network (DRL) 

architecture to process the time-series for the binary 
classification task. The detailed architecture is shown in 
Figure 3. 

The 100 ms segments extracted for this study represents 
time-series data with each 500 time steps long. The Long 
Short Term Memory (LSTM) [5] layers in the above model 
processes the time-series input, and the corresponding 
features are classified at the last layer (softmax activation). 
The architecture and the training scheme is developed 
using the PyTorch deep learning library [6]. The data is 
divided with fault based stratification to obtain 60% for 
training, 20% for validation, and the remaining 20% for 
testing.   

Binary Classification Results 
The confusion matrix obtained from the testing data is 

shown in Figure 4. The overall testing data classification 
accuracy is 74.74%. Detailed testing results are 
summarized in Table 3. However, the confusion matrix 
shows a distinct issue in the models ability to recognize 
many impending fault events correctly, highlighted by the 
large false negative percentage (23.48%). This is also 

observed in Table 3 where the recall rate for impending 
fault, and the precision for stable running classes are both 
low.  

 
Table 3: Binary Classification Performance 

Class Precision Recall F1-score 
Stable running 67.8% 96.5% 79.6% 

Impending fault 93.4% 51.8% 66.7% 

 
This behavior indicates that certain impending fault 

segments may closely resemble stable running conditions 
prior to fault onset, to a degree that the model is unable to 
distinguish between the two classes. We speculate that 
certain fault types identified by SMEs may not present 
sufficient precursors within the waveforms we use for the 
analysis. In order to further investigate this issue, we take 
a closer look at the fault types that represent the false 
negatives. Figure 5 shows the distribution of false negative 
events in terms of the ground truth fault type.    

It is evident from Figure 5 that the false negatives are 
dominated by events from ‘Single Cav Turn Off’, 
‘E_Quench’, and ‘Controls Fault’ fault types. Upon 
discussion with domain experts, it was confirmed that these 
fault types oftentimes require ancillary data for correct 
identification due to the lack of precursors present in the 
waveforms used for the study. Therefore we conducted a 
secondary experiment where we discard events from the 
three aforementioned fault types and obtain a secondary 
dataset of 2,642 fault events. We use the same model 
architecture, and follow the same training procedure. The 
model achieves a classification accuracy 92.1% for this 
dataset.          

FAULT TYPE PREDICTION TASK 
Given encouraging results from the binary classification 

task, we investigate the possibility of predicting the fault 
type before the onset of beam trip. In order to quantify the 
ability to predict the fault type with respect to the onset, we 
define a window-based analysis on the waveform data that 
we have collected. Specifically, a window of a specific 

Figure 3: DRL architecture for binary classification of pre-
fault data. 

 

 
Figure 5: Percentage of events with false negative classifi-
cation according to fault type.  
 

 

 

Figure 4: Confusion matrix for classification of stable run-
ning versus impending fault. 
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length l is positioned over the waveform data, centered on 
a time stamp t before the onset of the fault, as illustrated in 
Figure 6. The data that falls within the window is extracted 
to perform analysis on fault prediction. This is repeated 
over window locations that incrementally move from t = 
−600 ms to 0 ms in 50 ms intervals. The value of −600 ms
is chosen as the furthest time stamp prior to the fault event
based on suggestions of domain experts, and 0 ms denotes
the fault event onset.

Dataset 
We utilize the same dataset described in Table 2 as our 

base dataset. The window-based analysis in Figure 6 
results in multiple experiments conducted over each 
window location. In essence, for a given window location 
t, data that falls within the window is extracted from all 
examples to create training, validation, and testing sets 
specific to location t. Analysis using this data yields fault 
prediction performance for t ms prior to fault onset. In 
addition to multiple window locations, we also experiment 
with the effect of window size on prediction performance 
using lengths of l = 100 ms, 200 ms, 300 ms. 

 Prediction Model and Training 
We utilize the same general deep LSTM architecture 

shown in Figure 3 for this analysis. However, fault type 
prediction is essentially a multiclass classification task. 
Therefore, we augment the classification layer of the 
network to accommodate 8 fault classes. The same training 
and testing procedures used in the binary classification task 
are leveraged for each window dataset. Model 
development, training, and testing is performed using the 
PyTorch library [6].  

Fault Type Prediction Results 
Although the prediction network is trained and tested for 

each window experiment in a multiclass manner, we 
inspect the prediction performance for each class 
separately. This allows for observing the prediction 
efficacy for each fault more efficiently, considering the 
insights obtained through the binary classification task. 
Figure 7 shows performance of the prediction model 
plotted as a function of time prior to onset of 
“Microphonics”, and “E_Quench” fault types. The 
horizontal axis of the plots shows the center of the window 
used to extract data for the prediction task. For instance, 

Figure 6: Window based fault prediction analysis scheme. 

Figure 7: F1-score plots for the window based fault type prediction of microphonics and electronic quench fault types. 
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the F1-score at −600 ms for a given fault type indicates the 
model’s ability to predict the fault type 600 ms prior to the 
fault onset. We also observe that the predictive power of 
the model is highly dependent of the type of fault. For 
instance, the model is able to predict microphonics faults 

with over 0.5 F1-score from −600 ms with significant 
improvements with window locations closer to onset. 
Conversely, the model is unable to predict E_Quench 
events with acceptable accuracy until the window overlaps 
the fault onset. Figure 8 shows a snapshot of the fault 
dependent prediction performance for the case of 300 ms 
data window centered at −200 ms (200 ms before the fault 
onset).   

This analysis further demonstrates that certain faults 
such as microphonics show precursors prior to onset, 
which can be used to predict the faults prior to a trip. The 
analysis also provides insights into several fault types that 
may not show precursors due to their nature, or may not be 
sufficiently captured in the waveforms used in this study.                  

FUTURE WORK 
We have discussed our initial studies into the possibility 

of automated prediction of RF faults in C100 cavities using 

ML models. The investigations have yielded promising 
results, with insights into the possible prediction time 
ranges for multiple fault types. However, this study 
leverages static RF fault data. An effective fault prediction 
framework would require a data acquisition system that is 
able to stream the data signals in real-time during CEBAF 
operation. The C100 modules, and the associated LLRF 
systems, are currently undergoing a firmware upgrade to 

allow the collection of streaming data. This will provide 
valuable information regarding variations encountered in 
stable running conditions, and possible non-RF related 
fault events in CEBAF.  

Streaming data provides an opportunity to further 
improve and adapt the machine learning models to predict 
faults before they occur. To that end, we envision a data 
processing framework as shown in Figure 9. According to 
the preliminary framework, the prediction model gets 
direct access to the continuous data to make predictions on 
stable running versus impending fault, with probable fault 
type in real-time. The framework also allows storing select 
subset of the data for the purposes of routine model 
performance evaluation, developing new models, re-
training and fine-tuning of the deployed models. We also 
envision the C100 firmware upgrades and the proposed 
streaming data processing framework will generate 
significant amounts of information-rich data that may be 
useful to diagnose other CEBAF machine events beyond 
SRF cavity faults.   
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Figure 9: Preliminary framework for using machine learn-
ing models with continuously streaming data.    

 

Figure 8: Fault specific model prediction performance for
the case of 300 ms data window centered at −200 ms.    
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