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Abstract

Tuning particle accelerators is not straightforward as they
= depend on a large number of non-linearly correlated param-
eters that drift over time. In recent years advanced numeri-
cal optimization tools have been developed to assist human
operators in tuning tasks. A proper interface between the
optimizers and the control system will encourage their daily
use by the accelerator operators. In this contribution, we
present our latest progress in integrating an optimizer frame-
work into the control system of the KARA storage ring at
KIT, which will allow the automatic tuning methods to be
applied for routine tasks.

INTRODUCTION

The Institute of Beam Physics and Technology (IBPT)
at Karlsruhe Institute of Technology (KIT) operates sev-
eral accelerators, including the Karlsruhe research accelera-
tor (KARA) and the far-infrared linac and test experiment
(FLUTE) [1], along with a compact storage ring cSTART
and a plasma accelerator that are in the planning phase. Var-
ious machine learning methods have been implemented and
studied at the accelerators of IBPT. For example, Bayesian
optimization was used to optimize the injection efficiency
into the storage ring [2], and reinforcement learning (RL)
methods were employed to control the transverse motion
and microbunching instability at KARA [3, 4]. In order to
apply those methods at the accelerators, one often needs to
implement specialized wrappers, such as the interface to the
control system and results logging. They often don’t have a
user interface, which makes it more difficult for operators to
use. In addition, the lack of common interfaces makes the
software harder to maintain and requires the developer to be
up-to-date with control system or operating system updates.
Therefore, it is desired to have a generalizable framework
for accelerator tuning tasks that can make common features
and functionalities available across different particle accel-
erators.

One of the early examples of such a framework is
OCELOT [5, 6], a multi-purpose software suite developed
for the operation of European X-ray free-electron laser (Eu-
XFEL). It contains a generic optimization framework that
implemented several ready-to-use tuning algorithms like
Nelder-Mead simplex, Bayesian optimization (BO) [7], and
extremum seeking (ES) [8]. Nevertheless, many design
choices of OCELOT have been made around FEL operation
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and are more difficult to adapt to other tasks.

Recently, Badger [9] was developed as an alternative
generic optimizer framework that focuses on efficiency and
user-friendliness in the accelerator control room. After be-
ing tested at several facilities it has shown promising results
in accelerator tuning tasks. At IBPT, we are continuously
working on increasing the level of automation in daily oper-
ations and incorporating more standardized packages [10].
We decided to use Badger as the optimization framework for
its simplicity and adaptability to new tasks. In this paper, we
share our experience adapting Badger to the control system
at KARA and demonstrate the first applications of automatic
tuning during the accelerator commissioning process.

INTEGRATION OF BADGER

Badger Components

Here we briefly describe the the architecture of Badger
and the steps needed to apply Badger to a new optimization
task. Badger is written in Python with a modular approach,
where the core package merely provides the basic function-
ality like a command line interface (CLI) and a graphical
user interface (GUI) to control, monitor, and log the op-
timization process. It manages interfaces, environments,
and algorithms through a plugin system, which allows easy
modification and development of new plugins.

Interface In Badger, the communication with the con-
trol system is defined in an interface. Standard interfaces
like pyepics and pydoocs are already implemented in Badger,
providing basic read and write functionalities for the process
variables (PVs). For the applications at KARA, we use an in-
house developed Python package [11] for the channel access
(CA) to our EPICS control system, which takes site-specific
structures into account and uses the caproto [12] package as
a backbone.

Environment The environment defines all the available
variables and observables of interest for a subsystem of the
accelerator. In the case of the EPICS control system, it
contains mostly a list of the PVs that will be used in an
optimization process.

Algorithm The algorithm is used to suggest the next
point to evaluate in the optimization process. Since the inter-
faces with the machine are sufficiently abstracted, numerical
optimization methods can be separately developed and eas-
ily incorporated into Badger. For example, the Xopt [13]
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package can be seamlessly loaded in Badger. It provides pop-
ular tuning methods such as ES, Nelder-Mead simplex, and
a wide range of Bayesian optimization variants, including
adaptive BO, trust-region Bayesian optimization (TurBO),
and multi-objective BO.

Routine The routine in Badger defines a specific op-
timization task. It contains the environment and the opti-
mization algorithm to use. From the environment, it selects
which of the parameters are considered actuators, objectives,
and constraints for the task. This can be loaded through a
YAML file or dynamically configured using the CLI/GUI
during the operation.

Containerized Deployment

We chose to deploy Badger as a containerized application
for the sake of maintainability and stability. In such a way,
it is not affected by future changes in the operating systems
of our control room consoles. The workflow to deploy the
Badger container is illustrated in Fig. 1.

We maintain two public copies of the Badger project,
the core package Badger for custom modifications and the
badger-plugin, where we implemented additional environ-
ments and interfaces for the KARA tuning tasks. Both repos-
itories are forked from the original GitHub projects and syn-
chronized to the KIT Gitlab instance via Pull&Push mirrors.

Another repository badger-containerized contains the
files to set up a docker container. A continuous integration
and continuous development (CI/CD) pipeline is configured
so that once the code is updated, a runner will automatically
build the docker image and push it to our institute’s container
registry. In the docker image, it clones our latest custom
version of Badger and its plugins in Gitlab and installs the
dependencies from our facility-specific package registries,
such as the custom caproto and Elog packages [11].

Apptainer! [14] is used as the container system in the
control room consoles and managed centrally via the Salt
system [15, 16]. It can naturally execute Docker images
and has been widely adopted as a container format in the
scientific community. The operators can start the Badger
container in the control room directly using Apptainer, which
will pull the latest image version from the container registry,
or use the local copy otherwise.

When starting the container, we mount a directory in the
console into the container to store the configured routines
and the results of the optimization runs produced by Badger.
This folder can be shared among the control room consoles
so that one can access the Badger package from any de-
vice. In the future, we plan to set up a workflow so that the
optimization runs are automatically stored in a database.

Automatic Posting in Electronic Logbook

We can adapt the package further to our needs and add
custom features as we maintain a copy of Badger in our
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Gitlab repository. One of the first customizations we im-
plemented was the logbook function. At IBPT, we have an
electronic logbook system called ELog [17]. In addition to
the manual logging, automatic logbook entries are generated
by standard measurement routines, such as tune, chromatic-
ity, dispersion, and orbit response matrix measurements.

The Badger package provides its own logbook functional-
ity to save locally a screenshot of the optimization process
and an XML file with the run configurations. We adopted
this implementation so that, after a successful optimization
run, an Elog entry is generated with the attributes filled with
the respective settings read from the Badger routine. For
the automatic logging, we configured a logbook with the
following attributes.

e Fill number: An integer indicating the run number of
beam operations at KARA, incremented every time the
storage ring is injected with the new beam.

* Environment: Name of the Badger environment.

* Actuators: List of the PVs used for the optimization
and their ranges respectively.

* Objective: PVs or the metric used as the objective func-
tion for optimization.

e Optimizer: Name of the algorithm used for optimiza-
tion, as defined in Badger and Xopt generators.

e Start time: Unix timestamp of the optimization start
time.

* End time: Unix timestamp of the optimization end time.

* Attachment: The screenshot of the optimization pro-
cess, and the routine configuration in an XML file, as
defined in the original Badger package.

While we already have a Cassandra archiving system [18]
to store the history of machine parameters, the Elog provides
metadata to the optimization runs, such as the environment
configuration and algorithm hyperparameters. An electronic
logbook with these attributes will facilitate easy filtering
and finding of desired optimization runs for future analysis.

ACCELERATOR TUNING
DEMONSTRATION

Simulation Model

The Badger functionalities are first tested in a simu-
lated environment. We used the orbit correction system
at KARA [19], which includes a SoftIOC [20] to simulate
the orbit responses with respect to the corrector magnets
settings. In the corresponding Badger environment, we in-
cluded the corrector settings as variables and beam position
monitor (BPM) readings as observations. Different metrics
can be calculated based on the BPM values, e.g. the mean
square error (MSE) and the mean absolute error (MAE) with
respect to the target orbit.

Figure 2 shows one of the optimization results using BO
upper confidence bound (UCB). We randomly offset two
corrector magnets to create an orbit distortion and tried to
use three other correctors to minimize the MSE of the closed
orbit. After some exploration steps, BO quickly converged
to a stable setting, taking only around 20 steps. The MSE of
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Figure 1: Technical diagram of the containerized Badger deployment workflow. Arrows denote the origin points of the

actions.
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Figure 2: Using Badger to correct the beam orbit in simula-
tion. (a) Beam orbit before, during, and after the optimiza-
tion process. (b) Progress of the objective mean square error
of the BPM readings. (c) Values of the three corrector mag-
nets used to optimize the beam orbit. The gray lines in (b,c)
mark the values after 10 optimization steps corresponding
to the orange orbit in (a).

the final orbit could be reduced to 0.1 mm, where the initial
larger deviations were due to the two offset correctors.
Accelerator Commissioning

During the summer, the KARA accelerator complex was
shut down for scheduled maintenance, hardware upgrades,
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and the exchange of components. After such a shutdown
period, a re-commissioning phase is required. A substan-
tial amount of time is often required to manually adjust the
parameter settings to start up the machine and optimize the
beam injection to the same level of performance as before
the shutdown. The injection chain of KARA consists of
an electron gun, a racetrack microtron, and a booster syn-
chrotron [21]. The beam passes through the linac in the
microtron 10 times and is accelerated up to 53 MeV. Then,
it is extracted into the booster synchrotron, further accel-
erated to 500 MeV, and injected into the storage ring. The
injection happens at 1 Hz repetition rate. As this process is
inherently sequential, the injection tuning task can be further
split into several sub-tasks, which can be optimized after
each other. These include

e turn-by-turn beam current optimizations in the race-

track microtron,

* beam transport optimization of the injection line from

microtron to booster,

* beam orbit optimization to minimize the beam loss in

the booster synchrotron,

¢ beam transport optimization of the extraction line from

booster to the storage ring, and

* injection efficiency optimization into the KARA stor-

age ring.
We designed Badger environments for these tasks and tested
several automatic tuning routines in the commissioning
stage.

Figure 3 is a screenshot of the Badger run monitor in the
GUI, showing one of the microtron optimization runs. The
goal is to maximize the signal measured by a current trans-
former using four corrector magnets as tuning variables. The
top panel visualizes the progress of the objective function,
in this case, a beam current signal. The values of the tuning
variables, which are normalized to their allowed ranges re-
spectively, are plotted in the bottom panel. The middle panel
shows the states, which contain signals to be monitored in
addition to the objective and variables. The BO algorithm
is again used in this case and could converge within a few
tens of steps, reaching double the starting current value.
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Figure 3: Screenshot of the Badger run monitor during mi-
crotron tuning. In the top panel, the objective progress is
plotted. Additional observations (states) are monitored in
the middle. The bottom panel shows the actuator values.

Nevertheless, the generic optimization approach offered
by Badger has also its limitations. We observed that after cy-
cling the magnet in the microtron, the injection performance
was much worse than the previously achieved value. This
is due to the magnetic hysteresis, which is not accounted
for during numerical optimizations. Although it does not
affect the beams with higher energies as much, the hysteresis
effect becomes prominent for low-energy electrons in the
microtron.

We then used Badger to further tune the magnets in the
injection line to increase the booster injection current. To
test the reproducibility of the results, we repeated one of the
usual booster injection tuning tasks using the BO UCB and
Nelder-Mead simplex algorithms. Each algorithm was run
three times starting from the same detuned initial magnet
settings, where no beam was injected into the booster. As
shown in Fig. 4, both methods could consistently optimize
the injection current within 20 steps, where UCB outper-
formed Nelder-Mead both in efficiency and the final current
value. It needs to be noted that some actuators converged
towards the upper limit of the allowed range, which was de-
rived from the operators’ experience. In the future, we will
fine-tune the optimization range of each component based
on the analysis of historic machine settings.

CONCLUSION AND OUTLOOK

We integrated the generic tuning framework Badger and
Xopt at the KARA storage ring. A workflow was established
to automatically deploy the latest version of Badger in our
control system, making use of the CI/CD pipeline, container
system, and custom package registries. This can be further
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Figure 4: Tuning the booster injection current with Badger.
(a) Shows the injection current over steps using the BO-UCB
(blue) and Nelder-Mead simplex (orange) methods. (b,c)
Show the changes of the actuators respectively, i.e. the
extraction bending magnet current and the injection septum
magnet voltage.

used to ease the integration of other external packages into
our control system. Multiple Badger environments and rou-
tines are implemented for both the simulation and the real

accelerator. Initial tests of Badger during the commission- .

ing of the injectors showed promising results. Although
it still required human intervention or fine-tuning in some
edge cases, such as hysteresis or poorly defined optimiza-
tion ranges, it still aided the operator and largely automated
the injection-tuning process. We expect that in the future,
Badger will be used as a routine tuning tool during the daily
operation. A well-defined sequence of Badger routines can
be designed once we have identified all the necessary tuning
steps in the process of starting up the machine. Further algo-
rithms, for example, the hysteresis-aware optimization, will
be implemented to deal with more specific tuning cases that
are not covered by the ones available in the Xopt package.
With these improvements, the storage ring operation can be
greatly automated, or even become turn-key.

Furthermore, we plan to make Badger also available for
the linac test facility FLUTE and other future accelerators at
IBPT. This standardized optimization framework will allow
the easy transfer of developed algorithms between different
accelerators.
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