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Abstract

In recent studies the effect of the space charge induced
trapping has been shown relevant for long term storage
of bunches. There the mechanisms of emittance growth
and beam loss have been studied for frozen bunch parti-
cle distribution. However, when beam loss or halo density
are large enough, this approximation has to be reconsid-
ered. We present here a first study on the effect of self-
consistency in frozen models as intermediate step towards
fully 2.5 and 3D simulations.

INTRODUCTION: THE CHALLENGES OF
THE HIGH INTENSITY BEAMS

The increase of the beam intensity is an essential re-
quirement for basic research of several new projects. Ba-
sic issues are beam quality control (control of the emit-
tance increase) and beam loss. For example in the SNS
project proton bunched beams are stored for 1000 turns in
a four fold storage ring reaching a space charge tuneshift
of ∆Q = 0.15/0.2 [1]. In this project the beam loss con-
trol is very restrictive: ∆N/N = 10−4 [2]. In the JPARC
project the intensity of beams leads to tuneshifts of the or-
der of ∆Q = 0.17−0.28. Proton bunched beams should be
stored for 2.5×104 turns [3]. The beam loss control allows
here 4.5% beam loss. At GSI the SIS100 synchrotron [4] of
FAIR project is foreseen to deliver U+28 at an intensity of
6× 1011/s with ∆Q = 0.2. This goal is reached by inject-
ing 4 bunches from SIS18 in 2 different cycles. The beam
loss control is of 5% (1W/m hand-on maintenance). The
beam loss control will be obtained as a trade-off between
collimation system, magnet field quality, and resonance
correction system. However, as the storage time in SIS100
is of one second (∼ 2 × 105 turns), during the storage the
bunch has the time to experience the space charge repul-
sion, the lattice nonlinearities, and the synchrotron motion.
The latter plays, jointly with the space charge, an essential
role in determining beam loss. This complex beam dynam-
ics has been addressed in some detail in [5].

Computational challenges

A simple estimation of the computational load for pre-
dicting the beam loss evolution and distribution along the
SIS100 reveals challenging aspects for standard PIC codes.
In fact, taking a PIC grid resolution of the beam of ±10
grids, and considering a ratio beam pipe over beam size of
6, we obtain a transverse grid of 125 × 125. Keeping the

same number of grid points longitudinally we easily obtain
∼ 104 grid cells covering the beam. The finite number of
macro-particles into each grid cell is responsible for statis-
tical fluctuations and artificial emittance growth [6]. Esti-
mates from [7] suggest that few % emittance growth in a
2D coasting beam with ∆Q/Q ∼ 0.01 and εx = 50 mm-
mrad requires a control of the noise due to statistical fluctu-
ation better than 1% for long term simulation, that is more
than 104 particles per grid cell should be foreseen. This
rough estimates easily leads to 108 macro-particles needed
to simulate the space charge in a bunched beam. The re-
quirements on the integration step are important as well: in
a constant focusing lattice 20 integration kicks per betatron
wavelength allows to obtain an integrated dynamics, which
has a relative error less than 0.1% on the tuneshift. For a
typical tune of SIS100 as Qx ∼ 18, we find 360 integra-
tion steps. The overall computational load is severe as over
2 × 105 turns 108 macro-particles should be integrated in
108 integration steps. In this simulation condition the long
term effect of the modeling adopted is crucial.

THE ROLE OF COMPUTER MODELING

The number of existing accelerator codes is considerable
[8], and each of them is specialized in some area of inter-
est of the main code author or of the community, which the
code serves. However, when the complexity of the phe-
nomena under study is considerable and the understanding
of the mechanisms involved is in progress, the role of the
modeling becomes critical. In fact in regimes of high non-
linearity, implicit assumptions deriving from the modeliza-
tion may affect the outcome of simulations. The validation
of the computer modeling is therefore an essential step to-
wards the simulation of highly complex system such as the
long term storage of a high intensity bunch. The validation
process can follow 2 steps (see also Fig. 1). A benchmark-
ing/validation of the main space charge codes has been per-
formed for the Montague resonance [9].

• code-code benchmarking: results from different codes
simulating the same system are compared. The goal
of this step is to reach confidence that the modeling is
correct;

• experiment-code benchmarking: here the computer
modeling is used to reproduce the observables mea-
sured in an experiment. It is therefore validated, that
the physics in the model ”correctly” fits the physical
problem under study.
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Figure 1: In this schematic is shown the role of modeling
in the simulation of complex systems.

MODELING OF THE PHYSICS IN A HIGH
INTENSITY BUNCH

A simplified approach

We describe below the elements of a simplified 1D
model which allow a discussion on the relevant high in-
tensity effects during the long term storage. The main as-
sumption used here is that the bunch distribution is frozen.

• The AG structure of the lattice is substituted by a con-
stant focusing lattice. The equation of motion be-
comes x′′ + (Qx0/R)2x = 0, where Qx0 is the ma-
chine bare tune and R the ring radius.

• We then assume that the bunch distribution is Gaus-
sian in all 3 dimensions
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This distribution is deriving from a 6D matched
bunch into a 3 dimensional focusing structure. Also
σx, σy, σz are the x, y, z bunch rms sizes. This type
of distribution is realistic in absence of space charge.
When space charge is weak (∆Q/Q ∼ 1%), the dis-
tribution form assumed in Eq. 1 still remain a good
approximation.

• We introduce the lattice nonlinear component via
symplectic kicks of the form

(
x
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)
→
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x
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(2)

• For long bunches, which in normal operation condi-
tion can have an aspect ratio σx/σz ∼ 10−3, the trans-
verse space charge can be computed assuming that the

bunch is locally (at a given z) similar to a coasting
beam. For the purpose of this model we further as-
sume, for simplicity, that the bunch has equal trans-
verse axis. In this case the electric field in units of the
equation of motion can be computed by

Ex(x, y, z) = Ke−z2/(2σ2
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Here K is the beam perveance. Note that in this equa-
tion the term r =

√
x2 + y2 should be understood as

r = x, in fact as we discuss a 1D model, we should
keep the coordinate in the y−plane to zero. A better
modeling of the space charge in which the transverse
aspect ratio is taken into account is found in the clas-
sical integral expression [10]
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where T̂ = x2/(σ2

x +s)+y2/(σ2
y +s)+z2/(σ2

z +s).
In [11] this expression is expended in power series
to provide an space charge algorithm which is imple-
mented into the MICROMAP library.

• The integration scheme of the equation of motion is
standard: the space charge is introduced by kicks of
the form as in Eq. 2 with the substitution knxn →

Ex∆s, where ∆s is the integration steps. The number
of integration steps per turn is taken as 20 × Qx.

We apply this simplified model to the SIS18, where
R = 34.4 m, and take Qx0 = 4.35, and Qz0 = 10−3.
We excite a 3rd order resonance 3Qx = 13 via a single sex-
tupole with k2 = 0.1 m−2. In Fig.2a is shown the evolution
of the single particle emittance εx of a test particle with ini-
tial coordinates x = 1.5σx, and x = x′ = y = y′ = z′ = 0
and z = 3σz . Note the initial scattering of εx, which stems
from an incomplete trapping as the islands are crossing the
particle’s orbit in a non-adiabatic condition. The scatter-
ing is responsible for a nonlinear diffusion (see in Fig. 2b
the dense accumulation of orbits at small radii). When the
diffusion has brought the particle to large amplitudes, the
crossing of the island through the particle orbit gets closer
to an adiabatic crossing and trapping into islands occurs. In
Fig. 2a this is visible in the large jumps of εx. In Fig. 2b the
path of the particle orbit in the Poincare’ section is shown:
note that the region explored by the test particle is very
wide with respect the the rms beam size (the x axis is in
units of σx). when a full bunch is considered, this region
becomes a halo. On the left the shadowed region repre-
sents an example of a forbidden region, which may arise
from the presence of a mechanical aperture limitation in
the ring. Due to the scattering/trapping of the invariant,
the particle eventually reaches the forbidden area and get
lost. When the mechanical aperture is further limited by
the dynamic aperture (DA), the beam loss mechanisms is
essentially the same, with the difference that the intercep-
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tion of the halo with the DA creates a chaotic region. and
the particle extraction is enhanced by chromaticity.
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Figure 2: a) Single particle emittance evolution rescaled
with the initial emittance; b) Poincare’ section of one par-
ticle. The

The role of the chromaticity

A detailed 2D modeling of the effect of a long term
storage of a high intensity bunch is reported in [12]. An
important result is that the halo extension goes to infinity
when the bare tune approaches the resonance from above
(in this example Qx0 > Qxr and Qx0 → Qxr). When
the chromaticity is present (here natural chromaticity) the
particle tune is effected from momentum gain or a momen-
tum loss. Let’s consider the particles in the bunch of given
maximum off momentum δp/p. During the synchrotron

oscillations an extra tune modulation is introduced by the
chromaticity. If the bare tune is Qx0, when the particle is
in the center of the bunch (z = x = 0), the single par-
ticle tune is Qx = Qx0 ± ∆Qx,chr − ∆Qx,sc. The sign
+/− is related to the loss/gain of momentum during the
synchrotron oscillations, and ∆Qx,chr = −Qx0 δp/p rep-
resents the maximum tune variation due to the chromatic-
ity for the particles with maximum off-momentum δp/p.
If the effective ”bare tune” Q̃x = Qx0 − ∆Qx,chr is be-
low the resonance, then during one synchrotron oscillation
there will be a longitudinal amplitude z∗ such that Q̃x sits
on the 3rd order resonance bringing consequently the fixed
points (and the halo) to infinity. This argument can be ap-
plied to all particles in the bunch that have effective ”bare
tune” Q̃x = Qx0 − ∆Qx,chr below the resonance. The
number of those particles is function of Qx0 − Qxr. The
overall effect is that the chromaticity leads to a beam loss
stop-band as large as (∆Qx,chr)spread for the bunch.

VALIDATION

Code-code benchmarking

As previously discussed the code-code benchmarking
plays an important role in validating codes. For this rea-
son a code-code benchmarking has been initiated between
MICROMAP and SIMPSONS on the modeling of the dy-
namics of a bunched beam in SIS18 [13]. The bunch in-
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Figure 3: Rms emittance evolution as predicted by MI-
CROMAP and SIMPSONS.

tensity was adjusted to obtain a tuneshift of ∆Qx = 0.1.
The transverse sizes are Xrms = Yrms = 5 mm. One
synchrotron oscillation takes 1000 turns. A 3rd order reso-
nance was excited by a single octupole in the linear lattice.
The integrated strength is K2 = 0.2 m−2. The benchmark
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was performed in many steps to reach confidence that the
accelerator model and the initial condition of the simula-
tions were the same in both codes. In Fig. 3 is shown the re-
sult of the rms emittance growth versus time obtained from
the two codes for Qx0 = 4.36 over 100 synchrotron oscilla-
tions. The agreement reached is excellent on the time-scale
simulated.

Experiment-code benchmarking: the CERN-PS
measurements

In the experimental campaigns undertaken at the CERN-
PS these high intensity effects have been explored in well
experimental controlled conditions. The main parameters
of the measurements are ∆Qx = 0.075, storage time of
4.5 × 105 turns. The rms momentum spread of the beam
is ∆p/p = 1.5 × 10−3 (for more information on the ex-
periment see [5]). Figure 4 summarizes the experimen-
tal findings and the simulation results. The green curve
shows the simulation beam intensity after 1 second stor-
age. The reproduction of the beam loss (16% maximum
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Figure 4: Measurements in the CERN-PS experiment and
simulation. In black and blue are drawn the measured and
simulated relative emittance growth; in red and green the
measured and simulated relative growth.

beam loss) is still below the measurement (maximum beam
loss of 32%), but the role of the chromaticity is important:
without it only 8% beam loss appears in the simulations.
Note also that in the emittance growth regime the horizon-
tal emittance is larger than the measured one. We explain
this result in terms of beam loss, in fact in the experiment in
the tune range 6.28 < Qx0 < 6.3 beam loss are detected,
therefore damping the emittance growth (especially close
Qx0 = 6.28). The still remaining discrepancy of 16% be-
tween measured beam loss and simulated stems from some

of the assumption in the physics-modeling as the code-code
benchmarking has proven that code errors should be ex-
cluded in this time scale. The main assumption to be vali-
dated concerns the self-consistency.

ESTIMATES OF THE IMPACT OF
SELF-CONSISTENCY

The assumption of using a frozen bunch distribution
plays an important role in the beam loss prediction. The
inconsistency of the frozen model is evident when beam
loss reaches, for instance, 20-30% of the initial intensity
at once. Less obvious is the impact of beam loss as dy-
namical process on the trapping of particles. In order to
show the relevance of the self-consistency in the long term
prediction we made a simulation in which we used a con-
stant focusing model of the CERN-PS ring. We repro-
duced similar conditions as in the experiment. The space
charge modeling is taken analytic from an axi-symmetric
bunched beam as the 4th resonance acts mainly on the hor-
izontal plane. In Fig. 5 the green dots show the results of
the beam loss when the simulation is pushed to 2 × 106

turns: the chromaticity is included but the distribution is
kept frozen. Note that the maximum beam loss reaches
∼ 21% (in 2 × 106 turns). The black curve is instead

Figure 5: Simulation of the CERN-PS experiment: the
green dots are made including the chromaticity and the
simulation is up to 2 × 106. With red dots are marked
the measurements. In black are the results with artificial
perveance reduction.

obtained by adding in an artificial way the effect of beam
loss on the space charge through the perveance K , which
is then reduced according to the beam loss. Note that the
beam loss over 4.5 × 105 turns near Qx0 = 6.25 is larger
then the experimental findings. This stems from the not
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accurate modelization of the self-consistency. This exam-
ple shows how relevant is the effect of the self-consistency
on the beam loss: combined together with the chromatic-
ity it enhances considerably the beam loss much more than
a very long term effect without it (see Fig. 5). For under-
standing the shape of the beam loss in Fig. 5 we first at-
tempt to characterize Fig. 4 (for the frozen model). For this
purpose we define the parameter R = (Qx0 −Qxr)/∆Qx,
which specifies the distance of the resonance rescaled with
respect to the tuneshift. The parameter R may be thought
to be a rescaling factor in Qx0 − Qxr in Fig. 4 accord-
ing to the space charge tune-spread of the beam consid-
ered. In the frozen model the asymptotic beam loss is
depending mainly on R. The bunch space charge tune-
spread plays a role mainly in determining the time-scale
in which the asymptotic loss is reached. Therefore in a
self consistent simulation, while beam loss occurs, the ra-
tio R = (Qx0 − Qxr)/∆Qx changes increasing R. The
upper limit reachable is R ≤ 1. In fact when R > 1
the tune-spread does not overlap anymore with the reso-
nance, therefore as R approaches to unity beam loss will
stop. The integrated effect on beam loss of the change of
R is difficult to assess. In fact, if the change of R, due to
beam loss, is too fast then there is not time enough for the
beam loss associated to each R to buildup: this is shown in
Fig. 5 in the range 6.26 < Qx0 < 6.28. There the ”self-
consistent” beam loss (black curve) exhibits less beam loss
than the measurements (red curve). The best circumstance
to obtain the maximum loss occurs for Qx0 close to the
resonance. In this case the asymptotic beam loss is small,
consequently R will change value very slowly and there is
time for the beam loss associated to each R to accumulate.
This is visible in Fig. 5 were for Qx0 close to the resonance
the maximum beam loss of 45% is detected (black curve).
The asymmetry of the beam loss vs. Qx0 stems from this
effects.

CONCLUSION/OUTLOOK

The present status of the long term simulation of high
intensity beams has reached the border of the needs for
self-consistency. After several studies of the effect of trap-
ping of particles into resonances, and the evaluation of the
impact of the chromaticity on beam loss, we find here the
evidence that the effect of the self-consistency plays an es-
sential role in increasing the beam loss and therefore for
validation of physics/code modeling. The self-consistency
introduced in this paper is a preliminary attempt to intro-
duce this effect into simulations and the results here pre-
sented should not be understood as final. The introduc-
tion of the self-consistency into semi-analytical model re-
quires further studies. We add that at GSI an experiment
(S317) on the long term effect on a high intensity will be
performed in December 2006. From this experiment new
data obtained in a controlled experimental condition will
be obtained. The use of the rest gas monitor will allow to
follow the transverse bunch evolution during storage. A si-

multaneous transverse/longitudinal bunch data acquisition
will provide a unique source of benchmarking data.

Work supported by EU design study (contract 515873-
DIRACsecondary-Beams).
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