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Abstract

Wide-band finite-difference time-domain (FDTD) algo-

rithms for wake field simulations in accelerator structures

are presented. The schemes are based on enlarged sten-

cils enabling explicit updating of the variables over time.

An elaborated dispersion analysis verifies that the schemes

propagate plane waves in major coordinate axis directions

without numerical dispersion. The methods are validated

by comparing numerical results with results obtained by

other methods. The important issue of calculating wake

potentials in general 3D structures is addressed.

INTRODUCTION

Very short bunches (rms length in the sub-millimeter

range) will be used in future linear colliders. To be able to

propagate these short bunches numerically through a long

structure (several kilometers), billions of mesh cells are

needed in the longitudinal direction. To avoid accumula-

tion of dispersion errors during the numerical simulation, a

numerical scheme should ideally be free of numerical dis-

persion at least in the longitudinal direction. Several meth-

ods with this feature have been published [1, 2, 3, 4, 5]. In

large problems, the simulation time becomes very long, and

it is desirable to parallelize the codes. Explicit schemes are

usually computationally more effective and easier to paral-

lelize than implicit schemes.

THE PROBLEM FORMULATION

The beam is assumed to propagate rigidly, i.e., the wake

fields generated by the bunch do not affect the particle dis-

tribution within the bunch. The beam is also assumed to

propagate with the velocity of light along the z-axis. An

ultra-relativistic bunch (v = c) with a linear charge distri-

bution

ρ(x, y, z, t) = δ(x)δ(y)λ(z − ct) (1)

in free space creates a radial electric field distribution of the

form

Er(x, y, z, t) =
ρ(x, y, z, t)

2πε0
√

x2 + y2
. (2)

The field dynamics is governed by the Maxwell’s equa-

tions:
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∇× H =
∂D
∂t

+ J, ∇× E = −∂B
∂t

, (3)

∇ · D = ρ, ∇ · B = 0.

The scattered field formalism is used in this paper. Hence,

the excitation is embedded in boundary conditions and the

current density J vanishes inside the computational do-

main. Cylindrically symmetric problems are dealt with us-

ing a scalar potential as described in the next section.

THE NUMERICAL SCHEMES
Finite-difference schemes are usually based on solving

the Maxwell’s curl equations (4) iteratively in time and

space. The divergence equations are not explicitly enforced

in FDTD/FIT schemes [6, 7]. While the numerical diver-

gence vanishes for some schemes [6, 7], it is non-zero for

others [3]. A general operator splitting method is discussed

in [8], and has been applied to derive specific schemes in

[3]. We will focus on the curl equations in 3D and use a

scalar potential in 2D problems.

3D Scheme
Consider updating the x-component of the electric field.

The basic idea of the scheme is to enlarge the stencil al-

lowing a larger time step than with the Yee scheme. The

finite-difference operators presented for narrow-band ap-

plications in [9, 10] are modified and used here for wide-

band calculations. Thus, the operators are used without as-

sumptions on the frequency. The update equation for Ex in

free space reads:

Ex|n+1
i+1/2,j,k = Ex|ni+1/2,j,k −

α
∆t

ε0
Dz,0Hy|n+1/2

i+1/2,j,k −

4β
∆t

ε0
Dz,1Hy|i+1/2,j,k −

4γ
∆t

ε0
Dz,2Hy|n+1/2

i+1/2,j,k + (4)

α
∆t

ε0
Dy,0Hz|n+1/2

i+1/2,j,k +

4β
∆t

ε0
Dy,1Hz|n+1/2

i+1/2,j,k +

4γ
∆t

ε0
Dy,2Hz|n+1/2

i+1/2,j,k.

Here the three spatial derivative operators are all second-

order accurate by construction (center differences). The
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operator Dz,0 is the familiar center difference operator as

used in the standard Yee FDTD [6] scheme. The other two

operators Dz,1 and Dz,2 are weighted averages of similar

center differences defined at different positions in space.

The averages are taken symmetrically in space to guarantee

second-order accuracy. The spatial derivatives in (4) are

defined by

Dz,0Hy|n+1/2
i+1/2,j,k =

Hy|n+1/2
i+1/2,j,k+1/2 − Hy|n+1/2

i+1/2,j,k−1/2

∆z
,

Dz,1Hy|n+1/2
i+1/2,j,k =

Hy|n+1/2
i+1/2,j+1,k+1/2 − Hy|n+1/2

i+1/2,j+1,k−1/2

4∆z
+

Hy|n+1/2
i+1/2,j−1,k+1/2 − Hy|n+1/2

i+1/2,j−1,k−1/2

4∆z
+

Hy|n+1/2
i+3/2,j,k+1/2 − Hy|n+1/2

i+3/2,j,k−1/2

4∆z
+

Hy|n+1/2
i−1/2,j,k+1/2 − Hy|n+1/2

i−1/2,j,k−1/2

4∆z
, (5)

Dz,2Hy|n+1/2
i+1/2,j,k =

Hy|n+1/2
i+3/2,j+1,k+1/2 − Hy|n+1/2

i+3/2,j+1,k−1/2

4∆z
+

Hy|n+1/2
i−1/2,j−1,k+1/2 − Hy|n+1/2

i−1/2,j−1,k−1/2

4∆z
+

Hy|n+1/2
i+3/2,j−1,k+1/2 − Hy|n+1/2

i+3/2,j−1,k−1/2

4∆z
+

Hy|n+1/2
i−1/2,j+1,k+1/2 − Hy|n+1/2

i−1/2,j+1,k−1/2

4∆z
.

The update equations for the Ey and Ez are obtained by

permuting the indices. The calculation of the z-derivative

of the magnetic field is illustrated in Fig. 1.

As we are using the scattered field formalism, the bound-

ary conditions for the tangential electric fields on the PEC

(Perfect Electric Conductor) boundaries are given by

Escat
t = −Einc

t (6)

since the total tangential electric field Etot
t = Escat

t +
Einc

t = 0 on PEC interfaces. The components of Einc
t

can be evaluated from (2) in the computer code.

The magnetic field update equations are the same as with

the Yee scheme, i.e.

Hx|n+1/2
i,j+1/2,k+1/2 = Hx|n−1/2

i,j+1/2,k+1/2 −
∆t

µ0∆y
(Ez|ni,j+1,k+1/2 − Ez|ni,j,k+1/2) + (7)

∆t

µ0∆z
(Ey|ni,j+1/2,k+1 − Ey|ni,j+1/2,k)

and analogously for the Hy and Hz . The standard FDTD

update equations as proposed by Yee are obtained by let-

ting α = 1, β = γ = 0. However, as will be shown
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Figure 1: Graphical description to calculate the z-derivative of

the magnetic field located in the center of the box. The indicated

weights are assigned to the magnetic field values at the corre-

sponding vertices.

subsequently, the numerical waves propagate much more

isotropically with another choice of parameters α, β and γ.

With accelerator applications in mind, it is a significant fea-

ture of the proposed scheme that the dispersion properties

can be improved while at the same time increasing the sta-

ble time step to the so-called magic time step ∆t = ∆z/c.

This time step allows the use of a moving window [15] in

long time simulations without numerical dispersion in the

longitudinal direction.

2D Scheme Based on a Potential Formalism

Here we will introduce a new explicit scheme that can be

used in the special case of cylindrically symmetric struc-

tures. Starting from the Maxwell’s equations in cylindrical

coordinates

εz
∂Ez

∂t
=

1
r

∂(rHφ)
∂r

,

εr
∂Er

∂t
= −∂Hφ

∂z
, (8)

µφ
∂Hφ

∂t
=

∂Ez

∂r
− ∂Er

∂z
.

we define a scalar potential Φ as

Φ(r, z, t) =
∫ r

0

r′Escat
z (r′, z, t) dr′ (9)
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and obtain the following second-order partial differential

equation (PDE) for the potential:

∂2Φ
c2∂t2

=
∂2Φ
∂z2

+
∂2Φ
∂r2

− 1
r

∂Φ
∂r

. (10)

This has been solved in [4] and [5] implicitly such that there

is no numerical dispersion in z-direction. We will solve the

equation explicitly so that there is no dispersion in z− and

r-directions.

The PDE can be discretized using the standard second-

order center differences for the time-derivatives and spa-

tial averaging of center differences for the spatial deriva-

tives. As an example, consider the discrete version of the

second-order z-derivative at the spatial position (z, r) =
(i∆z,m∆r) and at time moment t = n∆t:

∂2Φ
∂z2

|ni,m = bz

Φ|ni+1,m−1 − 2Φ|ni,m−1 + Φ|ni−1,m−1

∆z2

+ az

Φ|ni+1,m − 2Φ|ni,m + Φ|ni−1,m

∆z2
(11)

+ bz

Φ|ni+1,m+1 − 2Φ|ni,m+1 + Φ|ni−1,m+1

∆z2

where az + 2bz = 1. The second-order r-derivative is dis-

cretized similarly. However, the first-order term is calcu-

lated as

1
r

∂Φ
∂r

|ni,m =
1

m∆r

[
Φ|ni−1,m+1 − Φ|ni−1,m−1

4∆r

+
Φ|ni,m+1 − Φ|ni,m−1

2∆r
(12)

+
Φ|ni+1,m+1 − Φ|ni+1,m−1

4∆r

]

regardless of the parameters az and ar. Notice that the sin-

gularity at m = 0 does not pose a problem since it occurs

on the axis where we explicitly set Φ = 0 due to cylindrical

symmetry. For a general cell aspect ratio ρ = ∆r/∆z ≥ 1
we use

az = ar =
1 + 2ρ2

2 + 2ρ2
, bz = br =

1
4(1 + ρ2)

. (13)

Using the second equation of (8) and the definition of the

potential (9) it is easy to show that the boundary condition

on boundaries z = const takes the form

∂Φ
∂z

= −rEscat
r = rEinc

r (14)

because Etot
r = Escat

r + Einc
r = 0 on the PEC boundary.

Notice that the incident field Einc
r can be imposed using

the analytical field distribution of an ultrarelativistic bunch

(2) where λ is a linear charge distribution. A typically used

gaussian charge distribution is given by

λ(s) =
q√
2πσ

e−
s2

2σ2 (15)

where σ is the rms length of the bunch.

On boundaries r = const we obtain from (9) the bound-

ary condition

∂Φ
∂r

= rEscat
z = −rEinc

z = 0 (16)

because there is no longitudinal component of the inci-

dent field. With a staircased geometry approximation, the

boundary conditions are based on these expressions (14)-

(16).

NUMERICAL DISPERSION
In this section we compare the numerical dispersion of

the proposed 3D and 2D schemes with others.

3D Scheme
The dispersion properties of the scheme can be found by

performing the von Neumann dispersion analysis. A plane

electromagnetic wave

E = E0e
j(kxx+kyy+kzz−ωt),

H = H0e
j(kxx+kyy+kzz−ωt). (17)

is inserted into the discrete equations. The dispersion rela-

tion follows by requiring nontrivial solutions to the homo-

geneous linear system:

det(A) = 0 (18)

where the matrix elements ai,j , i, j = 1, 2, 3 are defined as

a1,1 = sin2(
ω∆t

2
) − ∆t

εx∆y
sin(

kyy

2
)

∆t

µz∆y
sin(

kyy

2
)Cx,z

− ∆t

εx∆z
sin(

kzz

2
)

∆t

µy∆z
sin(

kzz

2
)Cx,y,

a1,2 =
∆t

εx∆y
sin(

kyy

2
)

∆t

µz∆x
sin(

kxx

2
)Cx,z,

a1,3 =
∆t

εx∆z
sin(

kzz

2
)

∆t

µy∆x
sin(

kxx

2
)Cx,y,

a2,1 =
∆t

εy∆x
sin(

kxx

2
)

∆t

µz∆y
sin(

kyy

2
)Cy,z, (19)

a2,2 = sin2(
ω∆t

2
) − ∆t

εy∆z
sin(

kzz

2
)

∆t

µx∆z
sin(

kzz

2
)Cx,y

− ∆t

εy∆x
sin(

kxx

2
)

∆t

µz∆x
sin(

kxx

2
)Cy,z,

a2,3 =
∆t

εy∆z
sin(

kzz

2
)

∆t

µx∆y
sin(

kyy

2
)Cx,y,

a3,1 =
∆t

εz∆x
sin(

kxx

2
)

∆t

µy∆z
sin(

kzz

2
)Cy,z,

a3,2 =
∆t

εz∆y
sin(

kyy

2
)

∆t

µx∆z
sin(

kzz

2
)Cx,z,

a3,3 = sin2(
ω∆t

2
) − ∆t

εz∆x
sin(

kxx

2
)

∆t

µy∆x
sin(

kxx

2
)Cy,z

− ∆t

εz∆y
sin(

kyy

2
)

∆t

µx∆y
sin(

kyy

2
)Cx,z.
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and the parameters Cx,y , Cx,z and Cy,z are given by

Cx,y = α + 2β(cos(kx∆x) + cos(ky∆y))
+ 4γ cos(kxx) cos(kyy),

Cx,z = α + 2β(cos(kx∆x) + cos(kz∆z))
+ 4γ cos(kxx) cos(kzz), (20)

Cy,z = α + 2β(cos(ky∆y) + cos(kz∆z))
+ 4γ cos(kyy) cos(kzz).

For cubic cells (∆ = ∆x = ∆y = ∆z) the scheme is

stable with α = 7/12, β = 1/12 and γ = 1/48 up to

the time step ∆t = ∆z/c. These parameters are used in

subsequent dispersion plots. In spherical coordinates, we

can express the components of the wave vector k = kxux+
kyuy + kzuz as

kx = k cos(φ) sin(θ)
ky = k sin(φ) sin(θ) (21)

kz = k cos(θ)

where k = |k| and φ is the azimuthal and θ is the eleva-

tion angle. The wave number k of the numerical scheme

as a function of propagation direction can be solved nu-

merically from equations (18)-(21). Let Nλ = λ/∆. We

1.1

1
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0.7
0

30
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90

120

150

180

210

240
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300

330

Figure 2: Normalized numerical phase velocity (vp/c) as a func-

tion of θ in xz-plane. Blue curves: proposed scheme. Red curves:

LT splitting [3]. Dotted lines: Nλ = 3. Dashed lines: Nλ = 5.

Solid lines: Nλ = 10.

will compare the numerical dispersion properties of the

proposed scheme and the LT splitting scheme [3] that is

the basis of a recently developed computer code PBCI [11]

(Parallelized Beam Cavity Interaction).

The numerical phase velocity normalized with the ve-

locity of light on xz-plane is shown in Fig. 2. An identical

plot is obtained on the yz-plane with both of the schemes.

It is observed that the phase velocity error vanishes with

the proposed scheme in ±x and ±z -directions regardless

of spatial resolution. It is also seen that with the proposed

scheme the anisotropy of the phase velocity is significantly

lower than with the LT splitting scheme with a fixed spatial

resolution Nλ = λ/∆z. The comparison in Fig. 3 with

the standard Yee FDTD scheme [6] reveals that the phase

velocity error is almost uniformly lower with the proposed

scheme than with the Yee scheme. The special feature of

zero dispersion in ±x, ±y and ±z directions can be seen.

0 50 100 150
−5

−4

−3

−2

−1

0

1

2

Propagation angle with respect to z−axis

lo
g 10

 (
v nu

m
−

c)
/c

Relative numerical dispersion error in xz−plane

Proposed scheme, N
λ
=5

Yee scheme, N
λ
=5

Proposed scheme, N
λ
=20

Yee scheme, N
λ
=20

Figure 3: Relative error of the phase velocity in xz-plane with

different mesh resolutions (Nλ = λ/∆z). Comparison of the

proposed scheme with the Yee scheme.

2D Scheme
Now the numerical dispersion of the 2D scheme is an-

alyzed. Let θ be the angle between k and the z-axis and

|k| = k. Consider a plane electromagnetic wave of the

form

Φ = Φ0e
−j(k cos(θ)x+k sin(θ)y−ωt). (22)

To derive the numerical dispersion equation, we use t =
n∆t and z = i∆z, r = m∆r and insert this ansatz into

(10), obtaining

2 sin2(
ω∆t

2
) + (

c0∆t

∆z
)2 ×

[cos(k∆z cos θ) ×
(1 − 4bz sin2(

k∆r sin θ

2
) − 2br∆z2

∆r2
) + (23)

∆z2

∆r2
cos(k∆r sin θ) ×

(1 − 4bz sin2(
k∆r cos θ

2
) − 2br∆r2

∆z2
) −

az − ∆z2

∆r2
ar −

j∆z2

4m∆r2
cos(

k∆z cos θ

2
)2 sin(k∆r sin θ)

]

Considering the special case θ = 0 (i.e. propagation in

z-direction) it is easy to show that the numerical phase ve-

locity equals the velocity of light in vacuum. Let us take the
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angle θ as a parameter and plot the numerical phase veloc-

ity as a function of θ for few mesh resolutions Nλ = λ/∆z
(here ∆z = ∆r is assumed). In Fig. 4, numerical phase

velocity is illustrated for the explicit and the implicit [5]

schemes for various mesh resolutions. With the explicit

scheme, the anisotropy of the phase velocity is very low if

20 cells over the bunch length are used. The scheme is free

of numerical dispersion in longitudinal and in transversal

directions for any (meaningful) spatial resolution.

0 20 40 60 80
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0.75

0.8

0.85

0.9

0.95

1
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1.1

Propagation angle with respect to z−axis

v p/c

Numerical phase velocity vs. propagation angle

New explicit λ=5∆z
New explicit λ=10∆z
New explicit λ=20∆z
Implicit λ=5∆z
Implicit λ=10∆z
Implicit λ=20∆z

Figure 4: Numerical phase velocity with the new explicit scheme

and with the implicit scheme of [5].

VALIDATION OF THE PROPOSED
SCHEMES

Wake field codes for circular cylindrically symmetric

structures have been successfully used for a long time

[14, 4, 5]. Also, the indirect method for wake potential

calculations has been implemented and verified for cylin-

drically symmetric problems [13, 5]. The recently pub-

lished scheme for calculating wake potentials in arbitrary

3D structures [16] is adopted here. Another approach to

perform the indirect integration in wake field calculations

is presented in [17]. The schemes [16, 17] allow to trun-

cate the outgoing beam pipe in the numerical code without

the need to time-march through the long outgoing beam

pipe. According to [16], on the plane at the end of the
truncated structure, one has to solve a Poisson’s equation

at each time step in the end of the numerical simulation.

We have implemented the scheme in [16] and compared

with 2D reference results. The 2D results are obtained

with the presented explicit low-dispersion variant of the

schemes [4, 5]. As a test structure we have chosen the

circular cylindrically symmetric step collimator in Fig. 5

(a). The longitudinal wake potentials as obtained with the

proposed 3D scheme and with the 2D scheme are shown

in Fig. 5 (b). The rms bunch length is σ = 200 µm. The

agreement is excellent. The proposed 3D scheme is also

validated by simulating a practical ILC collimator struc-

ture and by comparing with results obtained with another

20 mm

5 mm

8 mm

4 mm

4 mm

8 mm

(a)

−5 0 5
−40

−30

−20

−10

0
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W
||(0

,0
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)/
(V

/p
C

)

2D, σ/∆z=10
3D, σ/∆z=10

(b)

Figure 5: (a) A cylindrically symmetric step collimator. (b) Lon-

gitudinal wake potentials.

3D scheme. The collimator was built for experimental tests

carried out with SLAC, USA. The geometry of the collima-

tor is shown in Fig. 6. For validation purposes, we choose

a rms bunch length 1 of σ = 1.0 mm and compare with

the parallelized computer code PBCI [11]. The proposed

scheme has not been parallelized, and the limits of com-

putational resources are of course met earlier than with the

parallelized code. Since stair-casing is used, the conver-

gence can be guaranteed only with a relatively long bunch

(allowing more cells over the bunch length), as the tapered

sections slow down the convergence of the results with de-

creasing cell size. Numerical results in the case when only

38.05 mm

132.54 mm

38.1 mm
15.05 mm

2.75 mm

17.65 mm

15.05 mm 17.65 mm

38.05 mm

beam view

15.05 mm
17.65 mm

2.75 mm

side view

Figure 6: The ILC collimator geometry.

the direct integration is taken into account are shown in Fig.

7 (a). The results with the proposed scheme agree well with

the results of PBCI-code [11]. When the indirect wake po-

tential calculation is taken into account, we obtain the re-

sult in Fig. 7 (b). The indirect integration scheme was not

available in the version of PBCI used for these simulations.

−4 −2 0 2 4
−10

−5

0
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10

s/σ

W
||(0

,0
,s

)/
(V

/p
C

)

Proposed scheme, σ/∆z=11
PBCI, σ/∆z=14
Shape of the bunch

(a)

−4 −2 0 2 4
−20

−10
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s/σ

W
||(0

,0
,s

)/
(V

/p
C

) Wake potential
Shape of the bunch

(b)

Figure 7: (a) The longitudinal wake potential without indirect

integration. A comparison with PBCI. (b) The longitudinal wake

potential with the indirect integration included.

Finally we compare the 2D scheme with ECHO 2. At the

1The bunch length in the actual experiments was 300 µm.
2ECHO is a wake field code based on the implicit scheme [5].
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same time we demonstrate the convergence of the results

with decreasing cell size. The test structure is shown in

Fig. 8. We simulate the collimator with stair-cased geom-

etry approximation. Conformal techniques are available

but stair-cased comparison allows to better see the differ-

ences in accuracy between the methods. We calculated

2 cm

10 cm

9 cm

1 cm

1 cm

1 cm

1 cm

0.5 cm

Figure 8: A gently tapered circular cylindrically symmetric col-

limator.

the longitudinal wake potential using four different mesh

resolutions: σ/∆z = 5, σ/∆z = 10, σ/∆z = 20 and

σ/∆z = 40. The bunch length is 500 µm. The conver-

gence of the results with decreasing cell sizes can be ob-

served in Figs. 9 (a) and 9 (b). It may be noticed that the

accuracy with the proposed scheme is similar to ECHO with

about two times coarser mesh.
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Figure 9: (a) Longitudinal wake potential with the pro-

posed explicit scheme. Stair-cased geometry representation.

(b)Longitudinal wake potential with the implicit scheme of [5]

(computer code ECHO). Stair-cased geometry representation.

About 20−40 cells per σ are required to guarantee good

accuracy of the results for the collimator in Fig. 8. Calcu-

lations using conformal versions of the 2D codes show that

only 5 cells per σ are enough to achieve similar accuracy.

In 3D, the sufficient computation time is roughly inversely

proportional to the fourth power of the cell size. Obviously,

computational saving in large 3D problems would be huge

if conformal scheme could be used. The present 3D im-

plementation is based on stair-casing, but conformal exten-

sions are an important topic of future work.

CONCLUSIONS
Low-dispersion FDTD schemes for time-domain wake

field simulations in accelerator structures have been pre-

sented and validated. The proposed explicit schemes are

free of numerical dispersion in main coordinate axis direc-

tions and can be used with the moving window in large

accelerator simulations.
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(1977), pp. 116–120.

[8] G. Strang, On construction and comparison of difference
schemes, SIAM J. Numer. Alal., Vol 5, 1968, pp. 506–516.

[9] J. B. Cole, A high-accuracy realization of the Yee algorithm
using non-standard finite differences, IEEE Trans. Microw.

Theory Tech., vol. 45, no. 6, June 1997, pp. 991–996.

[10] J. B. Cole, A high-accuracy Yee algorithm based on non-
standard finite differences: new developments and verifica-
tions, IEEE Trans. Antennas Prop., vol. 50, no. 9, Sept 2002,

pp. 1185–1191.

[11] W.F.O. Müller, X. Dong, E. Gjonaj, R. Hampel, M.
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