
PARALLEL PARTICLE-IN-CELL (PIC) CODES∗

F. Wolfheimer, E. Gjonaj, T. Weiland
Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF)

Schlossgartenstr.8, 64289 Darmstadt, Germany

Abstract

A general methodology for the parallel performance
modeling of PIC simulations is proposed. The performance
model allows for the construction of an optimized paral-
lelization approach for PIC which preserves an equal dis-
tribution of the computational workload on the processors
while minimizing the interprocess communication. The
general scheme is further specialized to simulations with
a spatially very localized particle distribution as occuring
in electron accelerators. The performance of the algorithm
is studied using a benchmark problem. Additionally, a par-
allel, fully 3D simulation of the PITZ-Injector [1] is shown.

INTRODUCTION

Particle-In-Cell (PIC) simulations are commonly used in
the field of computational accelerator physics for modeling
the interaction of electromagnetic fields and charged parti-
cle beams in complex accelerator geometries. The model-
ing of charged particle dynamics requires the coupled solu-
tion of the MAXWELL equations

∇× �E = − ∂
∂t

�B , ∇× �H = �J + ∂
∂t

�D,

∇ · �D = ρ , ∇ · �B = 0
(1)

and the NEWTON-LORENTZ equation

d
dt

�pi = qi

(
�E(�ri) +

�pi

mi
× �B(�ri)

)
, (2)

where �pi, �ri describe the momentum and position
and qi, mi express the charge and mass of particle i, re-
spectively. The relation between the particle positions and
momenta is given by �pi = mi

d
dt�ri. The coupling of equa-

tions (1) and (2) occurs through the source terms �J and ρ.
In the case of NP particles the source terms may be ex-
pressed as

�J =
Np∑
i=1

qi
d�ri

dt
· δ(�r − �ri), ρ =

Np∑
i=1

qi · δ(�r − �ri).

(3)

The PIC algorithm approximates the solution of the
system of partial differential equations (1,2) numerically.
The solution strategy for the MAXWELL equations is
based on a spatial discretization of the problem domain
(computational grid). Field degrees of freedom (DOFs) are
computed only at a finite number of points determined by
the computational grid. Usually, for the discretization of

∗This work has been partially supported by DESY Hamburg.

the time dependence an explicit time integration scheme
is applied. In this work the spatial discretization has been
performed using the Finite Integration Technique (FIT) on
structured, Cartesian grids [2, 3] and the leap-frog scheme
has been used for the time integration.
For the numerical solution of the NEWTON-LORENTZ

equation computational particles are introduced. Each
computational particle represents a large number of real
particles. The time integration of particle trajectories is
performed using the well known Boris scheme and for the
calculation of the source term �J the charge conserving
algorithm [4] is used. For a more detailed description of
the PIC algorithm the reader is referred to [5].
However, the practicability of the method for real world
simulations is often limited by the huge size of accelerator
devices and by the large number of computational particles
needed for obtaining accurate simulation results. Thus,
the parallelization of the PIC codes becomes necessary to
permit the solution of such problems in a reasonable time.

PARALLELIZATION OF PIC

The parallelization of PIC using the Single Program
Multiple Data (SPMD) programing model allows for the
execution of the resulting program on a cluster of compute
nodes connected via a high speed network. Theoretically,
this offers access to nearly unlimited computing power.
However, the assignment of the computational workload
to the available compute nodes is highly critical for sim-
ulation efficiency. Therefore, a detailed understanding of
the computational workload generated by PIC is required
to realize this assignment efficiently. Figure 1 shows the
stages of a parallel PIC algorithm.
Two different parallelization strategies for PIC have been
proposed in the literature. The first one is based on the
geometrical decomposition of the computational domain
(partitioning) among the compute nodes. Each node is re-
sponsible for performing computational tasks on the field
DOFs and computational particles contained within the re-
spective subdomain (partition) [6]. The advantage of this
strategy follows from the fact that the gather and scatter
operations do not require interprocess communication and,
consequently, they introduce no communication overhead.
However, as the particle distribution changes during the
simulation the workload of the particle pusher will become
imbalanced. This not only deteriorates the parallel per-
formance of the algorithm but, additionally, may lead to
the failure of the calculation if one of the compute nodes
runs out of memory. This may happen when the parti-
cle distribution is spatially localized on a small region of

THM1MP02 Proceedings of ICAP 2006, Chamonix, France

290 High Performance Computing
Parallel Codes



Advance fields
�E(n) → �E(n+1)

�B(n) → �B(n+1).

Exch. field DOFs
at subdomain
boundaries.

Interpolate fields
to particle

positions (gather).

Push particles
�r

(n)
i → �r

(n+1)
i

�p
(n)
i → �p

(n+1)
i .

Extrapolate
currents to grid

(scatter).

Perform load
balancing if
necessary.

Δt

Figure 1: Flowchart for the parallelized PIC algorithm.
Global synchronization points are marked with black dots.

the computational domain and, as a result, a single node
has to hold all particles. Furthermore, particles leaving the
subdomain associated to their owner processor have to be
migrated to another processor and, therefore, the interpro-
cess communication increases. A possibility to enhance
the performance is to adaptively change the partition of the
computational domain according to the particle distribu-
tion. While this may significantly improve the balance of
the computational workload it likewise increases the inter-
process communication because of the data exchange oc-
curing during the load balancing operation. In some cases
this additional costs even compensate the benefit of a bet-
ter balanced workload. Further discussions concerning this
approach may be found in [6].
The second strategy assigns the computational particles to
processors independently from their position in the com-
putational domain. The advantage of this strategy is the
inherently balanced workload for both the field solver and
the particle pusher. However, as the particles are assigned
to arbitrary processors, the gather and scatter phases be-
come nonlocal operations. A particle which is located in a
cell for which its owner processor does not hold the field
DOFs the required data has to be sent to by a remote pro-
cessor. Thus, this approach provides a balanced workload
while increasing the communication costs.
Other algorithms have been proposed which try to combine
the strengths of both schemes. The reader is referred to [7]
for a more detailed analysis of parallelization schemes for
PIC.

Performance Modeling

A model describing the performance of a parallelization
scheme can be helpful when comparing different possible
implementation strategies and seeking for the one provid-

Symbol Explanation

NT Total number of time steps.

w
(iπ)
F (iT ) Time needed by processor iπ for field up-

date during time step iT .
w

(iπ)
B (iT ) Time needed for the exchange of field

DOFs assigned to cells located at the
boundary of the local subdomain of pro-
cessor iπ.

w
(iπ)
GS (iT ) Time needed for gather and scatter

operations.
w

(iπ)
P (iT ) Time needed for particle update.

w
(iπ)
M (iT ) Time needed for the migration of particle

and field DOFs due to, e.g., load balanc-
ing operations.

n
(iπ)
C (iT ) Number of field DOFs assigned to pro-

cessor iπ.
n

(iπ)
B (iT ) Number of field DOFs which have to be

exchanged for the field solver.
n

(iπ)
P (iT ) Total number of particles pushed by pro-

cessor iπ.
ñ

(iπ ,jπ)
P (iT ) Number of particles pushed by proces-

sor iπ which need field DOFs from pro-
cessor jπ .

m
(iπ)
C (iT ) Number of field DOFs migrated from and

to processor iπ.
m

(iπ)
P (iT ) Number of particles migrated from and to

processor iπ.

Table 1: Explanation of the notations used for the perfor-
mance model.

ing the best performance. In this section a performance
model for PIC is introduced. The model is used to con-
struct and optimize a parallelization scheme based on the
uncoupled assignment of particles and field DOFs. Addi-
tionally, the model is used to predict the behaviour of the
parallel speedup.
In the following performancemodel it is assumed that three
global synchronization points per time step are introduced
to the parallel PIC loop, cf. Fig. 1. The computing time
between two synchronization points is determined by the
processor which needs the most time to complete the tasks.
The problem of workload assignment may be formulated
as optimization problem. The objective function F which
should be minimized is given by the total time needed to
complete the simulation and can be written as

F :=
NT∑

iT =1

(
max

iπ

{
w

(iπ)
F (iT ) + w

(iπ)
B (iT )

}

+ max
iπ

{
w

(iπ)
GS (iT ) + w

(iπ)
P (iT )

}
+ max

iπ

{
w

(iπ)
M (iT )

})
,

(4)

where the notation used in equation (4) is given in Tab. 1.
The functions wF , wB , wGS , wP and wM are assumed to

Proceedings of ICAP 2006, Chamonix, France THM1MP02

High Performance Computing
Parallel Codes

291



be linear in the number of particles and field DOFs, respec-
tively, as follows:

w
(iπ)
F (iT ) = α · n(iπ)

C (iT ) (5)

w
(iπ)
B (iT ) = η · n(iπ)

B (iT ) (6)

w
(iπ)
P (iT ) = β · n(iπ)

P (iT ) (7)

w
(iπ)
M (iT ) = δ · m(iπ)

C (iT ) + ε · m(iπ)
P (iT ), (8)

w
(iπ)
GS (iT ) =

Nπ∑
jπ = 1

jπ �= iπ

(
γ · ñ(iπ ,jπ)

P (iT ) + γ · ñ(jπ,iπ)
P (iT )

)
,

(9)

where α, β, γ, δ, ε and η are parameters determined by the
hardware performance of the compute nodes and of the in-
terconnection network. The fact that the model parameters
do not depend on iπ corresponds to the (usual) case of a
homogeneous cluster. Also, these parameters are normally
time dependent as they may be influenced by other pro-
cesses executed on the cluster. However, as it is impracti-
cal to model those frequent fluctuations, these parameters
should be interpreted as mean values. The exchange of field
data needed by the particle pusher results vice versa in the
exchange of the currents created by the movement of the
particles. Thus, the communication costs for the gather and
scatter operations can be described by a single function. A
migration of particles and field DOFs between processors,
as described by wM , appears during load balancing oper-
ations. The modeling of wF , wB , wP , wGS , wM as linear
functions neglects any effects related to the memory hier-
archy of modern computers (cache effects) as well as any
latency of message passing operations. Tests performed on
different clusters suggest that those assumptions are justi-
fied for PIC simulations of reasonable size.
The exact solution of the optimization problem formulated
in equation (4) requires not only the knowledge of the hard-
ware performance of the compute nodes and the intercon-
nection network but also the a priori knowledge of the par-
ticle dynamics. As at least the information regarding the
particle dynamics is unavailable prior to the simulation,
the optimization problem can not be solved exactly. How-
ever, the problem can be solved when a few simplifications
are introduced. For the following discussions only condi-
tions where the field solver part is ideally balanced, i.e.,
the same number of field DOFs is assigned to each proces-
sor (w(iπ)

B (iT ) + w
(iπ)
F (iT ) = const.), are considered. Fur-

thermore, communication costs caused by the reassignment
of particles are neglected (w(iπ)

M (iT ) = 0). The objective
function simplifies to

F =
NT∑

iT =1

(
max

iπ

{
w

(iπ)
GS (iT ) + w

(iπ)
P (iT )

})
. (10)

The computational loads assigned to each processor and
the communication costs for the gather and scatter phase
can be described by a directed graph as shown in Fig. 2 for
a simulation using three processors. As the graph illustrates

1

2 3

βn
(2)
P

βn
(1)
P

βn
(3)
P

γñ
(3,1)
P

γñ
(1,3)
P

γñ
(2,3)
P

γñ
(3,2)
P

γñ
(1,2)
P

γñ
(2,1)
P

Figure 2: Graph illustrating the optimization problem.

the assignment of a particle to process jπ which needs field
data from processor iπ where iπ �= jπ causes the com-
putational load β + γ for processor jπ but, additionally, it
causes the computational load γ for processor iπ. Thus, for
the case that γ > β, i.e., for a very slow interconnection
network, it is not advantageous to assign any particle to a
processor which does not own the field DOFs necessary for
pushing the particle. In this case the parallelization scheme
which couples the field DOFs and particle assignment with
the geometrical partitioning of the domain outperforms the
uncoupled scheme for an arbitrary particle distribution.
For the case that γ < β a necessary condition for an op-
timum is that the load is balanced among the processors.
Otherwise, the value of the objective function may be re-
duced by migrating particles from the most heavily loaded
processor to the other processors. A necessary and suffi-
cient condition for an optimal particle assignment in terms
of the objective function requires the further constraint that
the graph representing the workload does not possess any
circles. Resolving a circle in the graph would result in a
reduced workload for at least two processors and, thus, the
value of the objective function may be reduced by the mi-
gration of particles from the other processors to the less
loaded processors.
The following scheme which assigns the computational
particles to the processors in Nπ steps will result in an opti-
mal state in terms of the objective function. The number of
particles which depend on the field data possessed by pro-
cessor iπ will be referred to as r(iπ). Without loss of gen-
erality it is assumed that the condition r(iπ) ≤ r(jπ) holds
for all iπ < jπ. In an initial step r(1) particles are assigned
to each processor such that only local field data is required
for the pushing. After this step there are no more particles
depending on field data from processor 1. In the next step
a total of (r(2) − r(1)) · (Nπ − 1) particles are assigned to
the processors. To processors 2, .., Nπ again only particles
are assigned which depend on local field data. To proces-
sor 1 a number of particles requiring field data from proces-
sors 2, .., Nπ is assigned where the number of particles re-
quiring field data from processor iπ is equal to the number
of particles requiring field data from processor jπ. In the

THM1MP02 Proceedings of ICAP 2006, Chamonix, France

292 High Performance Computing
Parallel Codes



i-th step there are only particles left which depend on the
field data of processors i + 1, .., Nπ. For processors 1, .., i
the total number of particles assigned in this step which re-
quire field DOFs from one of the processors i + 1, .., Nπ is
given by

Δn
(1..i)
P (i) =

β · (Nπ − i) · (r(i+1) − r(i))
Nπ · β + (Nπ − 2i) · γ , (11)

while the number of particles assigned to proces-
sors i, .., Nπ is given by

Δn
(i+1..Nπ)
P (i) =

[β · (Nπ − i) + γ · (Nπ − 2i)] · (r(i+1) − r(i))
Nπ · β + (Nπ − 2i) · γ .

(12)

This assignment scheme results in an equally balanced
workload and, additionally, introduces no circles into the
graph. The edges present in the resulting graph are marked
with bold lines in Fig. 2.
The following example illustrates the algorithm for a con-
figuration with three processors (Nπ = 3). The model pa-
rameters are assumed to have the values β = 3 and γ = 1.
A total of 120 particles are to be assigned to the proces-
sors and the values for r(iπ) are r(1) = 20, r(2) = 30 and
r(3) = 70. In the initial step Nπ · r(1) = 60 particles
are assigned such that each processor obtains 20 particles
depending only on local field DOFs. In the first step, the
next (r(2) − r(1)) · (Nπ − 1) = 20 particles are consid-
ered. Following (11), processor 1 obtains (Nπ−1)·β

β·Nπ+γ·(Nπ−2) ·
(r(2) − r(1)) = 6 particles, i.e., 3 particles which require
field DOFs from processor 2 and processor 3, respectively.
The number of particles assigned to processors 2 and 3 is
given by β·(Nπ−1)+γ·(Nπ−2)

β·Nπ+γ·(Nπ−2) · (r(2) − r(1)) = 7, as stated
by (12). Those particles depend only on field DOFs local to
processors 2 and 3. In the second step, processors 1 and 2
obtain 15 particles each which require field DOFs from
processor 3. Consequently, processor 3 receives 10 par-
ticles requiring local field DOFs. Thus, the total load of the
processors is

W (1) = 41β + 21γ = 123 + 21 = 144, (13)

W (2) = 42β + 18γ = 126 + 18 = 144, (14)

W (3) = 37β + 33γ = 111 + 33 = 144. (15)

While the introduced scheme can be applied to general PIC
simulations, for some classes of simulations the particle
dynamics is approximately known prior to the simulation
and, thus, this knowledge can be used to construct a scheme
which is optimized for this class of simulations. In the fol-
lowing section a simplified version of the above scheme is
introduced and analyzed.

Adaptive Bounding Box Approach

In the simulation of short bunch dynamics in accelerator
devices, such as the PITZ-Injector [1], the particle distribu-
tion is often spatially very localized. For such simulations

it can be advantageous to perform the necessary data ex-
change of the gather and scatter phase not particlewise as
for the general case described in the previous section but
rather by a global reduction operation. For that purpose,
each processor computes a local bounding box which de-
scribes the part of the computational domain which is filled
with the particles it owns during the push phase. This is a
computationally very cheap operation. Following, a global
bounding box is computed which describes the smallest
rectangular domain containing the local bounding boxes of
all processors. Figure 3 shows a small fraction of a compu-
tational domain. The global bounding box for the localized
particle distribution has been marked by bold lines. Next,

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��
��

��

��

��

��

����

��

��

��

��

�� ����
��

��

��

��

��

��

��

��

�� ��

��

��

��

�� ��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��
����

��

��
��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

���� ��

��
��

��

��

��

��

��

��
��
��

��

��

����

��

��

�� ��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

����

��

��

��

��
��

��

��

��

��

��

��

��

��

�� ��

��

��

��
��

��

��

��

��
��

��

��

��

��

��

��
��

��

��

��

����

��

��

��

�� �� ��

��

Figure 3: The global bounding box describes the smallest
rectangular domain which contains all particles.

each processor which possesses field DOFs located inside
the bounding box sends those values to all other processors
via a global reduction operation provided by the underlying
message passing library. Knowing the field DOFs inside
the bounding box each processor is able to push the parti-
cles it owns. The currents excited by the particle movement
are collected using again a global reduction operation. A
big advantage of the approach is its simplicity as it does
not require the organization of many complicated and error
prone communication operations. Furthermore, the collec-
tive communication functions of message passing libraries
are often implemented using efficient schemes such that the
time needed to complete the operation scales less than lin-
ear with the number of processors. This is also true for the
MPI [8] implementations used for the performance eval-
uation presented in the next section. Figure 4 shows the
dependency of the completion time for the global reduc-
tion function used in the implementation from the number
of processors and the length of the message, respectively.
While the completion time depends linearly on the message
length, the dependency from the number of processors is
approximately O(log(Nπ)). Therefore, the term wGS sim-
plifies and can be expressed as

wGS = κ · Nbunch · log(Nπ), (16)

where Nbunch describes the number of field DOFs included
in the global bounding box and κ is a parameter describ-

Proceedings of ICAP 2006, Chamonix, France THM1MP02

High Performance Computing
Parallel Codes

293



ing the bandwidth of the interconnection network. Addi-
tionally, no data migration is required by the approach as
the computational load remains balanced during the whole
computation. Therefore, the term wM in the objective func-
tion vanishes.
The very simple structure of the algorithm and the inde-
pendence of the communication needed for the gather and
scatter phases from both the assignment of field DOFs and
particles to the processors allows for a prediction of the
parallel speedup in case the overhead introduced by the ex-
change of field DOFs at subdomain boundaries is neglec-
ted (wB = 0). The overhead associated with this term is
hard to predict in a general expression as it depends com-
pletely on the assignment of the field DOFs to the proces-
sors. However, as the predicted speedup shows a good
agreement with the performance results obtained with an
implementation this assumption seems to be justified. With
the functions in (5,7,16) and the simplifications described
above the predicted parallel speedup ŜNπ of the algorithm
can be written as

ŜNπ =
1

1
Nπ

+ κ·Nbunch
α·NC+β·NP

· log(Nπ)
. (17)

where NC and NP is the total number of field DOFs and
particles used in the simulation, respectively. From (17) it
becomes clear that the speedup of the algorithm is bound
by the communication costs as the computational workload
is ideally balanced. For an interconnection network with
infinite bandwidth (κ → 0) the algorithm scales optimally.

0

0.4

0.8

1.2

1.6

2.0

0 20 40 60 80 100 120

C
PU

tim
e/

s

Number of Processors

1e6 doubles

2e6 doubles

3e6 doubles

Figure 4: Performance of MPI Allreduce(...).

RESULTS

The performance of the proposed parallelization ap-
proach has been investigated using a benchmark example
of an electron bunch traveling inside an ideally conducting
tube. A model of the PITZ-Injector provides a real world
simulation example. The simulations have been performed
on the cluster of the Center for Scientific Computing (CSC)
in Frankfurt/M.. This cluster is build up of 282 nodes
with dual processor boards (AMD Opteron 244, 1.8 GHz),
64 nodes are connected via Myrinet and 218 nodes are con-
nected via 1 Gbps Ethernet.

Performance Results

Figure 5 shows the dependency of the parallel speedup
from the number of particles used in the simulation.
As (17) suggests, the speedup is better on the faster Myrinet
network. Besides, an increasing number of particles in-
creases the speedup of the algorithm. Figure 6 shows the
dependency of the speedup from the number of field DOFs
included in the bounding box. The bounding box of the
first bunch (size 1) includes about 600 field DOFs while the
bounding box of the second bunch (size 2) includes about
4800 field DOFs. The spatial discretization using 5 million
grid points remains unchanged for all simulations. The de-
crease of the parallel speedup when the bounding box in-
creases can be obtained. The predicted behaviour of the
parallel speedup given by equation (17) is in very good
agreement with the results obtained by the benchmarks.

0

5

10

15

20

25

0 5 10 15 20 25 30

Pa
ra

lle
lS

pe
ed

up

Number of Processors

1e4 particles (Ethernet)

1e5 particles (Ethernet)

1e4 particles (Myrinet)

1e5 particles (Myrinet)

Figure 5: Influence of the bandwidth of the interconnec-
tion network on the parallel speedup of the bounding box
approach.

0

5

10

15

20

25

0 5 10 15 20 25 30

Pa
ra

lle
lS

pe
ed

up

Number of Processors

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�
� �

�
�

�
� � �

1e4 particles (size 1)

1e5 particles (size 1)

1e4 particles (size 2)

1e5 particles (size 2)

Figure 6: Influence of the number of field DOFs within the
bounding box on the parallel speedup. The dots indicate
the speedup values predicted by (17).

PITZ-Injector

PITZ is a test facility at DESY Zeuthen for research and
development on laser driven electron sources for Free Elec-
tron Lasers (FEL) and linear colliders. Figure 7 shows a

THM1MP02 Proceedings of ICAP 2006, Chamonix, France

294 High Performance Computing
Parallel Codes



photo cathode coaxial coupler

waveguide

diagnostic cross

z

Figure 7: CAD model of the PITZ-Injector including the diagnostic cross.

0

1

2

3

4

0 0.25 0.50 0.75 1.00

σ
x
,y

/m
m

z/m

Figure 8: Transversal rms-radius of the electron bunch.

CAD model of the electron gun and the diagnostic cross
used for the insertion of sensors into the beam line. The in-
fluence of the inhomogenities in the trift tube introduced
by the diagnostic cross on the dynamics of the electron
bunch is an important question. Thus, a full 3D PIC Simu-
lation of the structure has been performed. The maximum
dimensions of the electron bunch are σx,y = 3.75mm,
σz = 2.5mm while the dimensions of the gun and the
trift tube including the diagnostic cross are lx,y = 10cm,
lz =1m. Due to the multiscale nature of the problem an
extremely high number of grid points is required to dis-
cretize the model with the necessary accuracy. As the par-
ticle distribution is spatially very localized, the paralleliza-
tion approach described above is appropriate for this prob-
lem. Figure 8 and 9 show the transversal bunch rms-radius
and the transversal emittance versus the z-position of the
bunch barycenter.

CONCLUSIONS

A parallelization approach for PIC simulations has been
presented and the performance has been evaluated in a
computational environment of a computer cluster. Addi-
tionally, the theoretical analysis of parallel performance has
been discussed. The analytically predicted parallel speedup
has been found to be in good agreement with the perfor-
mance results obtained on the computer cluster.

0

100

200

300

400

500

600

700

0 0.25 0.50 0.75 1.00

ε x
,y

/π
m

m
m

ra
d

z/m

Figure 9: Transversal emittance of the electron bunch.

A real world simulation of the PITZ-Injector has been per-
formed using the proposed parallel strategy.

REFERENCES

[1] A. Oppelt et al., ”Status and First Results from the Upgraded
PITZ Facility”, Proc. FEL 2005

[2] T. Weiland, ”A Discretization Method for the So-
lution of Maxwell’s Equations for Six-Component
Fields”,Electronics and Communication, Vol.31, pp.116-
121, 1977

[3] T. Weiland, ”On the Numerical Solution of Maxwell’s Equa-
tions and Applications in Accelerator Physics”, Particle Ac-
celerators, Vol.15, pp.245-292, 1984

[4] J. Villasenor and O. Buneman, ”Rigorous charge conser-
vation for local electromagnetic field solvers”, Computer
Physics Communications 69, pp.306-316, 1992

[5] U. Becker, T. Weiland, ”Particle-in-Cell Simulations within
the FI-Method”, Surveys on Mathematics in Industry, Vol.8,
No.3-4, pp.233-242, 1999

[6] F. Wolfheimer, E. Gjonaj, T. Weiland ”Dynamic Domain
Decompositions for Parallel PIC Simulations in the Time
Domain”, Proc. ICEAA, pp.1003-1006, 2005

[7] E. A. Carmona, L. J. Chandler, ”On parallel PIC versatility
and the structure of parallel PIC approaches”, Concurrency:
Practice and Experience, Vol.9(12), pp.1377-1405, 1997

[8] ”MPI-2: Extensions to the Message-Passing Inter-
face”,University of Tennessee, Knoxville, Tennessee, 1997

Proceedings of ICAP 2006, Chamonix, France THM1MP02

High Performance Computing
Parallel Codes

295


