
ACCELERATOR DESCRIPTION FORMATS*

Nikolay Malitsky, BNL, Upton, NY 11973, U.S.A.
Richard Talman, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract
Being an integral part of accelerator software,

accelerator description aims to provide an external
representation of an accelerator’s internal model and
associative effects. As a result, the choice of description
formats is driven by the scope of accelerator applications
and is usually implemented as a tradeoff between various
requirements: completeness and extensibility, user and
developer orientation, and others. Moreover, an optimal
solution does not remain static but instead evolves with
new project tasks and computer technologies. This talk
presents an overview of several approaches, the evolution
of accelerator description formats, and a comparison with
similar efforts in the neighboring high-energy physics
domain. Following the Accelerator-Algorithm-Probe
pattern, we will conclude with the next logical step,
Accelerator Propagator Description Format (APDF),
providing a flexible approach for specifying associations
between physical elements and evolution algorithms most
appropriate for the immediate tasks.

INTRODUCTION

Since accelerators are relatively complicated devices,
their description is both important and complicated.
Different descriptions are appropriate for different
purposes. This article considers only descriptions that are
appropriate for analyzing the behavior of beams of
particles in an accelerator. This includes designing the
beamlines making up the accelerator, simulating the
propagation of the beams, controlling active elements in
the accelerator to improve performance, and interpreting
the outputs from diagnostic devices. Furthermore, it is
only the description of data used for these tasks, as
contrasted with their physics and engineering, that is to be
discussed.

Limited in this way, the subject is as much computer
science as it is physics and engineering. Many, or even
most, users of the accelerator programs look primarily for
ease of use and are not particularly sympathetic to the
issues discussed here. But, after working diligently for
decades, providers of these codes are well aware of the
difficulties. Most of the difficulties are shared by all
computer-dominated tasks. Accelerator program
developers, numbering in the hundreds, are facing much
the same problems as the hundreds of thousands of
program developers in the rest of the world. Naturally, to
the extent possible they attempt to import up-to-date
developments from the outside world into the accelerator
domain. This is a constant source of tension however,
because of the inevitable dependence by working facilities
and control systems, on ancient (but largely satisfactory)
software. Without repeating to this point, one should

realize that the evolution of accelerator descriptions has

been influenced by this tension.

Another source of tension has been due to the evolution
from a small number of small groups to a large number of
large groups, all working on similar problems. Already in
a small group program modularity is important, so that
different people can work simultaneously on different
problems. The importance of interfaces is also present at
this stage. But it is relatively easy and not particularly
error-prone, when used by only a small group, for the
interfaces to be informal. In this environment a single, all-
purpose code, addressing a relatively small range of
problems is very practical. As accelerators have become
more complex and diverse, a more formal approach,
taking advantage of concurrent advances in computer
science, has become appropriate. Without these advances
the ordinary user would by now be paralyzed by the
complexity of the devices being described.

The following sections describe the gradual evolution
from an all-purpose-program approach to a more formal,
more modularized, more flexible environment in which
many workers can both supply, and take advantage of,
diverse tools without being unduly concerned about
“bookkeeping” errors resulting from the sheer complexity
of the systems.

MULTI-PURPOSE INPUT LANGUAGE

The early history of accelerator simulation consisted of
diverse programs such as TRANSPORT, SYNCH,
COMFORT, DIMAD, MAD, MARYLIE, and TEAPOT,
for example as described by E. Keil[1]. These
``multipurpose'' programs applied then, and in one form
or another, still apply to a variety of projects. They
accomplish a variety of tasks, such as design
optimization, correction, tracking, and instability analysis.
They use a variety of algorithms, such as nonlinear
approaches, aberration formalism, Lie-algebraic
techniques, symplectic integration, differential algebra;
etc.

An important step in coordinating input descriptions for
these efforts occurred in 1984 workshop[2] which
suggested MAD input language[3] as Standard Input
Format (SIF). The MAD/SIF major features were:

Comprehensive accelerator model based on two
major concepts: elements and beam lines

Classification of element types

Classification of their attributes

Convention grammar, based of a single rule:
 label: keyword {,attribute }

Directives triggering procedural program
mechanisms such as subroutines, loops, variable
assignment, and others.

Proceedings of ICAP 2006, Chamonix, France THM2IS01

Pre- and Post-Processing
Standardization

297

Though this language has held up fairly well, the
adaptation of the MAD parser to a different program is
made difficult by its reliance on FORTRAN. This has led
to the development of numerous “dialects”. Also, a
convenient set of MAD directives could not substitute for
the power of the standard programming languages. As a
result, it prevented user-specific extensions and the
description of complex scenarios, such as tune
modulation, etc.

APPLICATION PROGRAMMING

INTERFACE

Further development of accelerator technologies and
applications introduced new computational tasks
associated with the study of new physical effects, devices
and their complex combination. This tendency
emphasized extensibility as one of the major criteria of
the accelerator programs. In the previous section, it has
been already mentioned that the approach based on the
embedded parsers could not address all spectra of new
requirements. At that time, an interesting and influential
solution had been implemented by M. Berz in COSY
INFINITY[4] which suggested procedures for
constructing and adding new elements:

INCLUDE ‘COSY’
PROCEDURE RUN;
 PROCEDURE SQ PHI L B D;
 . . .
 ENDPROCEDURE;
OV 5 2 0;
UM;
DL .1; {drift}
SQ 30 .2 .1 .1;
PM 6;
ENDPROCEDURE;
RUN;
END;

In the above example, the new element type SQ is added
“on the fly” in the user program and processed together
with the COSY INFINITY conventional drift DL. Such a
dynamic mechanism provided accelerator physicists with
a powerful tool for going beyond the standard
descriptions and solving numerous differential algebra-
based applications.

The ideas and development of object-oriented
technology brought a new basis for revising and
extending the previous approaches. The automatic
differentiation suggested by L. Michelotti in the
MXYZPTLK code [5] was the first important illustration
of the powerful C++ concepts in the context of accelerator
physics applications. Soon, this approach was extended
in the PAC++ framework [6] for describing accelerator
elements and beam lattices. In PAC++, the accelerator
element was considered as superposition of MAD
parameters:

SBend hb = length*L + 2*PI/N*ANGLE;

where L and ANGLE are global instances of the Attribute

class, and length, PI, N – double variables. The
assignment, addition and multiplication are implemented
by overloaded operators that build the key-value
associations of the element attributes. The new scripting
languages allowed further simplification of this
description with the help of the built-in containers. For
example, in Perl, the same hb element can be described
as:

 $hb->set(“l” => $length, “angle” => 2*$pi/$n);

The primary goal of this approach was to get rid of the
existing embedded parser and to bring the full power of
the standard programming language to users for
describing complex accelerator scenarios and supporting
new extensions. For the same reasons and to a much
larger extent, the similar C++ approach is very popular in
the high energy physics applications. For example, the
following extract of the BNL STAR detector file [7] is
described directly via the class methods of the new ROOT
Geometry package [8]:

TGeoCombiTrans* ct_tpad31000 =
 new TGeoCombiTrans();

tpss->AddNode(tpad3,1000,ct_tpad31000);
ct_tpad31000->RotateX(0.0);
ct_tpad31000->RotateY(0.0);
ct_tpad31000->RotateZ(15.0);

On the other hand, programming the lattice description in
C++, Perl or other standard languages also has serious
drawbacks, particularly, because of their strong bias
towards the associated software environment. This issue
becomes very important in modern multilab projects and
will be considered in the next section.

EVOLUTION OF EXCHANGE FORMATS

Early Versions

Less ambitious than standardizing computational
procedures is to standardize the description of the
elements making up the accelerator, intentionally
excluding any implication whatsoever as to how particles
and beams will propagate through them. Already at this
level it is sensible to distinguish between two levels of
specificity. For the designer it is most valuable to have a
compact description of a lattice of identical, ideal
elements, with parameters conveniently expressed by
algebraic formulas. But the “as-built” accelerator has non-
identical elements, all of whose elements can be
expressed as numbers. It is the latter form of lattice that is
appropriate for control systems, and it is the form in
which “save sets” (snapshots of all parameters valid at a

THM2IS01 Proceedings of ICAP 2006, Chamonix, France

298 Pre- and Post-Processing
Standardization

fixed time) can be written. Such files can be referred to as
“fully-instantiated”, and are sometimes referred to as
“flat”, because of the relative simplicity of their database
storage.

An example of full instantiation was the writefile,
readfile pair of directives in TEAPOT[9] (1997). By
1998, in connection with the US-LHC collaboration, to
support collaboration among workers at remote locations,
the need had become clear for standardization of fully
instantiated lattice descriptions. For simple lattices it is
not difficult to repeat detailed orbit steering and retunings
on every computer run, but for a complex lattice, “tuned-
up”, fully-instantiated lattices need to be shared among
remote designers. Suggested design principles for a fully-
instantiated exchange protocol were spelled out in a 1998
letter[10]. As one response, the Standard eXchange
Format (SXF[11]) was developed and (crucial to its
successful use) was made routinely available from MAD-
X. SXF has been used since then within Unified
Accelerator Libraries (UAL).

ADXF 1.0

At the same time that SXF was being developed, an
exchange format called Accelerator Description Exchange
Format (ADXF[12]), based on the newly-popular
computer language XML was also developed. Though
“markup” is a term that is specific to the fields of type-
setting and publication, this language has proved to be
surprisingly appropriate for describing complicated
datasets, which includes accelerator descriptions.

Some ADXF features, in addition to full-instantiation,
and responsive to principles expressed in [10], are:

It mimics SIF to the extent possible, retaining basic
accelerator objects and their attributes.

It represents the accelerator by a flattened tree of
accelerator nodes, elements and sequences.
Sequences can be nested to an arbitrary depth and
may have references to the corresponding design
beam lines they instantiate.

It is minimally complete, meaning it describes all
components that influence or monitor particle
motion, and only those.

It is extensible, meaning that it supports (but does not
encourage frivolous) extension in two ways:
introduction of new element types and introduction
of new “element buckets” (parameter containers)
common to all element types.

Shared (for example between two rings) lines are
supported.

The description should be “consistent across different
phases, from conceptual design, through engineering
design and analysis, to operation.” Though ADXF
provides only a flat “operational” view of the
accelerator, it provides a mechanism for
reconstruction of the idealized hierarchical model
from which it descended.

Containing only element and lattice descriptions, and
no beam dynamics, ADXF is usable without
prejudice by any physical method.

The principles of “multiple-realization” and
“compliance with computer standards” expressed in
[10] are met by the adoption of XML.

ADXF 2.0

ADXF has been updated to version 2.0. The most
substantial revision was motivated by the requirements of
integrating E.Forest's PTC concept of “fibre bundle”[13]
into the ADXF model. The essential features of this
integration are illustrated in Fig. 1, which can be
compared to Fig. 2. In both cases the core description is
tree of elements and sequences (or sectors) of elements.
(Roughly speaking) in ADXF2.0 this tree is broken and
expanded in order to permit the assignment of positioning
and orientation attributes to whole sectors which are then
referred to as ``frames'' aliasing PTC “fibre”. In this way
positioning attributes can be added to “on-the-bench” or
“uninstalled” elements to produce “as-installed” elements.

Figure 1: ADXF 1.0 model.

Figure 2: ADXF 2.0 model.

Though the 1.0 and 2.0 versions appear different in the
figures, much of the apparent difference has come from
the need for treating positioning and powering attributes
differently. The instantiation of (intentional) “survey”
positioning (possibly different for the same element in
different lines) and (presumeably unintentional, but
necessarily tied to a physical element) offsets and
rotations are also exhibited in Fig.2. The ADXF2.0 model
is built from five main ingredients:

An accelerator is any sector selected by the user.

Accelerator Node

Sequence Element

children *

composite

set of*

Offse

Rotation

Attribute Set

MField

…

sector frames or
element insertions

Frame
Survey

position

Sector

Accelerator Node

Element

design

at

reference

set of*

Offse

Rotation

Attribute

MField
ml, a, b

sector frames

type, length

Proceedings of ICAP 2006, Chamonix, France THM2IS01

Pre- and Post-Processing
Standardization

299

A sector is a named sequence of frames with
installed accelerator components.

A frame is a layout of rigidly-associated installed
components. It contains a relative position,
misalignments, and a reference to an associated
sector or accelerator element.

An accelerator element is an accelerator device or
positioned physical effect, such as a beam-beam
interaction. All accelerator elements have the same
structure: name, length, and an open collection of
attribute sets. An element may also have a reference
to its design version.

An element attribute set is a container of attributes
relevant to a single physical effect or feature, such as
magnetic field, aperture, etc.

The concept of a frame as a layout of installed
components addresses several accelerator applications.
First, it facilitates the study of multi-line systems sharing
the same sector. The list of such applications is extensive:
injection and extraction systems, interaction regions,
recirculators, and many others. Second, the new ADXF
model becomes consistent with the detector description
based on positioned volumes. For example, according to
the ROOT Users’ guide [14]:

“The basic components used for building the
logical hierarchy of the [detector] geometry are the
positioned volumes called nodes. Volumes are fully
defined geometrical objects having a given shape and
medium and possible containing a list of nodes.
Nodes represent just positioned instances of volumes
inside a container volume”.

Such similarity not only justifies the new accelerator
model, but also facilitates the integration of accelerator
and high energy physics software for modeling the cross-
domain tasks, e.g. background study.

Extensibility of accelerator element types and attribute

sets in ADXF 2.0 is provided by the consistent object-
oriented mechanism of the XML schema, which
eventually resolved the deficiencies of the previous DTD-
based approach. For example, all MAD elements are
implemented as descendents of the ADXF generic
accelerator component, and we can use the conventional
MAD terminology with the XML flavor:

 <elements>
 <marker name=“mk1” />
 <sbend name=“bend” l=“lq” angle=“deltheta” />
 <quadrupole name=“quadhv” l=“lq” k1=“kq1” />
 …
 </elements>

In addition, in the boundary of the same schema, the MAD-
oriented design description can be connected with another
view or extended with SXF-like operational collection of
generic elements:

<elements>
 <sbend name=“d0mp08” l=“3.58896”
 angle=“-0.0151186” />

<element name=“bi8-dh0” design=“d0mp08“>
 <mfield b=“0 0 0.005476 0.033503”
 a=“0. 0 -0.010166 0.024366” />
 </element>
 …

</elements>

where the <mfield> tag is associated with a set of
measured magnetic field attributes of the bi8-dh0 element,
designed after the MAD sbend d0mp08.

Another immediate practical advantage of the XML
schema is its adherence to the collection of the schema-
aware tools, editors or postprocessors. Such a schema-
aware editor presents a full set of all legal options for
every entry and is guaranteed to produce only schema-
compliant lattice descriptions. As well as eliminating
many sources of error, this facilitates the subsequent
generation of other lattice descriptions. There are
powerful XML tools for converting a schema-compliant
file into other formats. Hence, for example, though it is
difficult (and not necessary possible in principle) to
convert a MAD file into and ADXF file, it is very easy
and robust to convert an ADXF file (satisfying a MAD-
specific schema) into a MAD file. For a given lattice, to
apply a simulation code that requires proprietary input is
therefore relatively straightforward once one has the
lattice in ADXF form. Finally, intermediate, tuned-up
lattices, typically fully-instantiated in numerical form, can
be edited using the same tools as used on the original
design lattice.

PROPAGATOR FORMAT EXTENSION

Multi-purpose accelerator program input files usually
combine the accelerator element description along with
directives defining the calculations to be performed. As
discussed in the introduction, this organization is
appropriate for small, relatively specialized tasks.

Rather than following this approach, to improve the
code modularity, the Accelerator Propagator Framework
was introduced into UAL [15]. This is an environment in
which a variety of (independently-generated) tools can be
applied to the same accelerator lattice. The first step was
to adopt the Element-Algorithm-Probe conceptualization
of accelerator simulation ingredients. Elements are
magnets, RF cavities, etc. Their parameters are fully
described in the ADXF file. All quantities whose
evolution around the lattice are of interest and are
mathematically-calculable are referred to as probes.
Examples are individual particle coordinates, bunch
centroid coordinates, transfer matrices, transfer maps
(expressed as truncated power series), Twiss functions,
and so on. Finally, algorithms are the mathematical
formulas which implement propagation computationally.
The APF object model is shown in Fig. 3, where the
element and algorithm concepts are represented

THM2IS01 Proceedings of ICAP 2006, Chamonix, France

300 Pre- and Post-Processing
Standardization

correspondingly by the Accelerator Node and Propagator
Node.

Figure 3: Accelerator Propagator Framework

With this organization, all that remains is to associate
each element with the algorithms to be used to evolve all
needed probes through the element. This is the function of
a separate file called Accelerator Propagator Description
Format (APDF). Since this file can be put into one-to-one
correspondence with the full sequence of elements
making up the lattice, it is, logically, a list of algorithm
names, one for each element. The APDF file might
therefore be expected to have roughly the same length as
the ADXF file to which it is to be associated. In fact,
since the same algorithms are applied to whole classes of
elements, with natural defaults, the APDF file is typically
very short. In addition, in APDF each propagator may be
associated with an entire accelerator sector. This scheme
allows one to bridge the gap between element-by-element
and map-based approaches.

A sample APDF file (used in a recent emittance growth
calculation) is:

<apdf>
<propagator id=“stringsc” accelerator=“ring”>
<create>
<link algorithm=“DriftStringSCKick” types=“Default” />
<link algorithm=“DriftTracker” types=“Marker” />

<link algorithm=“DriftStringSCKick” types=“Drift” />
<link algorithm=“DipoleStringSCKick” types=“Sbend”/>
<link algorithm=“MltTracker”
 types=“Quadrupole|Sextupole|Multipole|[VH]kicker”/>
<link algorithm=“RFCavityTracker” types=“RfCavity”/>
</create>

</propagator>
</apdf>

(To make this listing fit the column format of this report,
the full designations of the classes to which these methods
apply have been suppressed; the full class designation is,
in fact, required.) This file controls evolution through an
arbitrary lattice with intrabeam space charge forces taken
into account. To turn off all space charge calculation (for
example because it is too time-consuming) and revert to
default tracking (which is thin element tracking) one need
only remove the lines containing methods whose names

include “StringSCKick” in this file. No changes are
needed in the ADXF file. (It is philosophically
satisfactory that a lattice description has no reason, in
principle, to be aware of the algorithms to be used in
simulating beam evolution through the lattice.)

Briefly, the attributes of the links listed in the APDF file
are:

A sector is a pair of begin and end accelerator
element design names, e.g. d1, qf1 defining a sector
that includes d1 but not qf1.

An element is a regular expression that selects
accelerator nodes by their name; e.g. q1|q2.

 A type is a regular expression that selects accelerator
nodes by their type; e.g. Quadrupole|Sextupole.

 An algorithm is the full class name of the associated
propagator; e.g. TEAPOT::MltTracker.

Sector, elements, and types define three different
approaches for selecting families of accelerator elements.
In case of overlapping, sector-based priority is first,
element-based priority is second, and type-based priority

is third.

APDF addresses a spectrum of applications ranging
from small special tasks to full-scale, realistic models
encompassing heterogeneous effects. Some modeling
scenarios are indicated in Table 1.

Table 1: Some APDF-based applications

Application Configurable Propagator

1 Longitudinal beam
dynamics

2D matrices + RF tracker

2 Linear lattice
functions

4D tracker

3 Fast tracking Combination of maps and
thin elements

4 Instrumentation
modeling, e.g. beam
transfer function

#3 + propagators for active
diagnostics devices, such
as AC dipole

5 Dynamic aperture,
halo, IR background
investigation

element-type association

6 Special localized
effect, beam-beam,
impedance, ions

#3 or #5 + propagator for
special effect

7 Post-processing
analysis (e.g. MIA)
and visualization

all of the above + post-
processing aware virtual
devices

8 Full-scale “realistic”
model

All of the above

COMPOSITE APPROACH

The variety and evolution of different approaches
suggested that an optimal program interface must be built
as some their combination. The choice of the particular
structure depends on many factors: legacy of accumulated
programs, scope of the project applications, available
resources, background and preferences of developers, and

Accelerator Node

Propagator
Sequence

Propagator
Component

begin and
end nodes

Bunch

Twiss

TEAPOT::BasicPropagator

Taylor Map

…

Propagator Node Probe

TIBETAN::BasicPropagator

…

nodes

Proceedings of ICAP 2006, Chamonix, France THM2IS01

Pre- and Post-Processing
Standardization

301

many others. According to our experience with the
development of Unified Accelerator Libraries (UAL)
environment, we recognize the following three
approaches:

Application Programming Interface

Lattice Exchange Format

Propagator Description Format
In UAL, the user interface is implemented by the C++
class Shell serving as a project-oriented façade to
underlying structures and algorithms. The user application
starts with reading the exchange format generated from
the MAD-X design toolkit, online model or defined by
user. To address both legacy and new applications, UAL
supports two lattice exchange formats: SXF and ADXF
2.0. After the initialization of the accelerator containers,
the user can access and directly update them with the C++
interface, for example, for distributing random errors,
simulating tune modulation, and so on. Within the Model
Player interactive analysis environment [16] the
Accelerator Propagator Description Format (APDF) has
become a necessary part of all present RHIC offline and
online applications.

REFERENCES

[1] E. Keil, “Computer Programs in Accelerator Physics,”
AIP, 1985

[2] Workshop for the Standardization of MAD Input
Language for Beam Optics, Stanford, 1984

[3] D.C. Carey and F.C. Iselin. “Standard Input Language
for Particle Beam and Accelerator Computer
Programs,” Snowmass, Colorado, 1984

[4] M. Berz, “Computational aspects of design and
simulation: COSY INFINITY.” Nuclear Instruments
and Methods, A298:473, 1990

[5] L. Michelotti, “MXYZPTLK: A practical, user-
friendly C++ implementation of differential algebra:
Users’s guide,” FN-535, 1990

[6] N. Malitsky, A. Reshetov, and G. Bourianoff,
“PAC++: Object-Oriented Platform for Accelerator
Codes,” SSCL-675, 1994

[7] STAR team, private communication, 2006
[8] A. Gheata, “GEOM: Status and developments,”

ROOT Workshop, 2005
[9] L. Schachinger and R. Talman, “Teapot: A Thin-

Element Accelerator Program for Optics and
Tracking,” Particle Accelerators, 22, 35(1987)

[10] F.C. selin, E. Keil, R. Talman. Letter to ICFA Beam
Dynamics Newsletter, 21 January, 1998

[11] F. Pilat et.al., “Standard eXchange Format (SXF) for
Accelerator Description.” RHIC/AP/155, 1998

 [12] N. Malitsky and R. Talman “Accelerator Description
Exchange Format,” ICAP, 1998

[13] E. Forest et al., “Polymorphic Tracking Code PTC,”

KEK Report 2002-3.
[14] R. Brun et al, “ROOT User’s Guide,”
 http://root.cern.ch
[15] N. Malitsky and R. Talman, “The Framework of

Unified Accelerator Libraries,” ICAP, 1998,
http://www.ual.bnl.gov

[16] V. Fine, N. Malitsky, R. Talman, “Interactive
analysis environment of Unified Accelerator
Libraries,” Nuclear Instruments and Methods, A 559,
2006

THM2IS01 Proceedings of ICAP 2006, Chamonix, France

302 Pre- and Post-Processing
Standardization

