
ACCELERATOR DESCRIPTION FORMATS*

Nikolay Malitsky, BNL, Upton, NY 11973, U.S.A.
Richard Talman, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract
Being an integral part of accelerator software, 

accelerator description aims to provide an external 
representation of an accelerator’s internal model and 
associative effects. As a result, the choice of description 
formats is driven by the scope of accelerator applications 
and is usually implemented as a tradeoff between various 
requirements: completeness and extensibility, user and 
developer orientation, and others. Moreover, an optimal 
solution does not remain static but instead evolves with 
new project tasks and computer technologies. This talk 
presents an overview of several approaches, the evolution 
of accelerator description formats, and a comparison with 
similar efforts in the neighboring high-energy physics 
domain. Following the Accelerator-Algorithm-Probe 
pattern, we will conclude with the next logical step, 
Accelerator Propagator Description Format (APDF), 
providing a flexible approach for specifying associations 
between physical elements and evolution algorithms most 
appropriate for the immediate tasks. 

INTRODUCTION

Since accelerators are relatively complicated devices, 
their description is both important and complicated. 
Different descriptions are appropriate for different 
purposes. This article considers only descriptions that are 
appropriate for analyzing the behavior of beams of 
particles in an accelerator. This includes designing the 
beamlines making up the accelerator, simulating the 
propagation of the beams, controlling active elements in 
the accelerator to improve performance, and interpreting 
the outputs from diagnostic devices. Furthermore, it is 
only the description of data used for these tasks, as 
contrasted with their physics and engineering, that is to be 
discussed.

Limited in this way, the subject is as much computer 
science as it is physics and engineering. Many, or even 
most, users of the accelerator programs look primarily for 
ease of use and are not particularly sympathetic to the 
issues discussed here. But, after working diligently for 
decades, providers of these codes are well aware of the 
difficulties. Most of the difficulties are shared by all 
computer-dominated tasks. Accelerator program
developers, numbering in the hundreds, are facing much 
the same problems as the hundreds of thousands of 
program developers in the rest of the world. Naturally, to 
the extent possible they attempt to import up-to-date 
developments from the outside world into the accelerator 
domain. This is a constant source of tension however, 
because of the inevitable dependence by working facilities 
and control systems, on ancient (but largely satisfactory) 
software. Without repeating to this point, one should 

realize that the evolution of accelerator descriptions has 

been influenced by this tension.

Another source of tension has been due to the evolution 
from a small number of small groups to a large number of 
large groups, all working on similar problems. Already in 
a small group program modularity is important, so that 
different people can work simultaneously on different 
problems. The importance of interfaces is also present at 
this stage. But it is relatively easy and not particularly 
error-prone, when used by only a small group, for the 
interfaces to be informal. In this environment a single, all-
purpose code, addressing a relatively small range of 
problems is very practical. As accelerators have become 
more complex and diverse, a more formal approach, 
taking advantage of concurrent advances in computer 
science, has become appropriate. Without these advances 
the ordinary user would by now be paralyzed by the 
complexity of the devices being described.

The following sections describe the gradual evolution 
from an all-purpose-program approach to a more formal, 
more modularized, more flexible environment in which 
many workers can both supply, and take advantage of, 
diverse tools without being unduly concerned about 
“bookkeeping” errors resulting from the sheer complexity 
of the systems.

MULTI-PURPOSE INPUT LANGUAGE

The early history of accelerator simulation consisted of 
diverse programs such as TRANSPORT, SYNCH, 
COMFORT, DIMAD, MAD, MARYLIE, and TEAPOT, 
for example as described by E. Keil[1]. These 
``multipurpose'' programs applied then, and in one form 
or another, still apply to a variety of projects. They 
accomplish a variety of tasks, such as design 
optimization, correction, tracking, and instability analysis. 
They use a variety of algorithms, such as nonlinear 
approaches, aberration formalism, Lie-algebraic
techniques, symplectic integration, differential algebra;
etc.

An important step in coordinating input descriptions for
these efforts occurred in 1984 workshop[2] which 
suggested MAD input language[3] as Standard Input 
Format (SIF). The MAD/SIF major features were:

Comprehensive accelerator model based on two 
major concepts: elements and beam lines

Classification of element types

Classification of their attributes

Convention grammar, based of a single rule:
        label: keyword {,attribute }

Directives triggering procedural program
mechanisms such as subroutines, loops, variable 
assignment, and others.
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Though this language has held up fairly well, the 
adaptation of the MAD parser to a different program is 
made difficult by its reliance on FORTRAN. This has led 
to the development of numerous “dialects”. Also, a 
convenient set of MAD directives could not substitute for 
the power of the standard programming languages. As a 
result, it prevented user-specific extensions and the 
description of complex scenarios, such as tune 
modulation, etc.

APPLICATION PROGRAMMING 

INTERFACE

Further development of accelerator technologies and 
applications introduced new computational tasks 
associated with the study of new physical effects, devices 
and their complex combination. This tendency 
emphasized extensibility as one of the major criteria of 
the accelerator programs. In the previous section, it has 
been already mentioned that the approach based on the 
embedded parsers could not address all spectra of new
requirements. At that time, an interesting and influential 
solution had been implemented by M. Berz in COSY 
INFINITY[4] which suggested procedures for
constructing and adding new elements:

INCLUDE ‘COSY’
PROCEDURE RUN;
   PROCEDURE SQ PHI L B D;
   . . .
   ENDPROCEDURE;
OV 5 2 0;
UM;
DL .1; {drift}
SQ 30 .2 .1 .1;
PM 6;
ENDPROCEDURE;
RUN;
END;

In the above example, the new element type SQ is added 
“on the fly” in the user program and processed together 
with the COSY INFINITY conventional drift DL. Such a 
dynamic mechanism provided accelerator physicists with 
a powerful tool for going beyond the standard 
descriptions and solving numerous differential algebra-
based applications. 

The ideas and development of object-oriented 
technology brought a new basis for revising and 
extending the previous approaches. The automatic 
differentiation suggested by L. Michelotti in the 
MXYZPTLK code [5] was the first important illustration 
of the powerful C++ concepts in the context of accelerator 
physics applications.  Soon, this approach was extended 
in the PAC++ framework [6] for describing accelerator 
elements and beam lattices. In PAC++, the accelerator 
element was considered as superposition of MAD 
parameters:

SBend hb = length*L + 2*PI/N*ANGLE;

where L and ANGLE are global instances of the Attribute 

class, and length, PI, N – double variables. The 
assignment, addition and multiplication are implemented 
by overloaded operators that build the key-value
associations of the element attributes. The new scripting 
languages allowed further simplification of this 
description with the help of the built-in containers. For 
example, in Perl, the same hb element can be described 
as:

    $hb->set(“l” => $length, “angle” => 2*$pi/$n);

The primary goal of this approach was to get rid of the 
existing embedded parser and to bring the full power of 
the standard programming language to users for 
describing complex accelerator scenarios and supporting 
new extensions. For the same reasons and to a much 
larger extent, the similar C++ approach is very popular in 
the high energy physics applications. For example, the 
following extract of the BNL STAR detector file [7] is 
described directly via the class methods of the new ROOT 
Geometry package [8]:

TGeoCombiTrans* ct_tpad31000 = 
                                     new TGeoCombiTrans();

tpss->AddNode(tpad3,1000,ct_tpad31000);
ct_tpad31000->RotateX(0.0);
ct_tpad31000->RotateY(0.0);
ct_tpad31000->RotateZ(15.0);

On the other hand, programming the lattice description in 
C++, Perl or other standard languages also has serious 
drawbacks, particularly, because of their strong bias 
towards the associated software environment.  This issue 
becomes very important in modern multilab projects and 
will be considered in the next section.  

EVOLUTION OF EXCHANGE FORMATS

Early Versions

Less ambitious than standardizing computational 
procedures is to standardize the description of the 
elements making up the accelerator, intentionally 
excluding any implication whatsoever as to how particles 
and beams will propagate through them. Already at this 
level it is sensible to distinguish between two levels of 
specificity. For the designer it is most valuable to have a 
compact description of a lattice of identical, ideal 
elements, with parameters conveniently expressed by 
algebraic formulas. But the “as-built” accelerator has non-
identical elements, all of whose elements can be 
expressed as numbers. It is the latter form of lattice that is 
appropriate for control systems, and it is the form in 
which “save sets” (snapshots of all parameters valid at a 
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fixed time) can be written. Such files can be referred to as 
“fully-instantiated”, and are sometimes referred to as 
“flat”, because of the relative simplicity of their database 
storage.

An example of full instantiation was the writefile,
readfile pair of directives in TEAPOT[9] (1997). By 
1998, in connection with the US-LHC collaboration, to 
support collaboration among workers at remote locations, 
the need had become clear for standardization of fully 
instantiated lattice descriptions. For simple lattices it is 
not difficult to repeat detailed orbit steering and retunings 
on every computer run, but for a complex lattice, “tuned-
up”, fully-instantiated lattices need to be shared among 
remote designers. Suggested design principles for a fully-
instantiated exchange protocol were spelled out in a 1998 
letter[10]. As one response, the Standard eXchange 
Format (SXF[11]) was developed and (crucial to its 
successful use) was made routinely available from MAD-
X. SXF has been used since then within Unified 
Accelerator Libraries (UAL).

ADXF 1.0

At the same time that SXF was being developed, an 
exchange format called Accelerator Description Exchange 
Format (ADXF[12]), based on the newly-popular 
computer language XML was also developed. Though 
“markup” is a term that is specific to the fields of type-
setting and publication, this language has proved to be 
surprisingly appropriate for describing complicated 
datasets, which includes accelerator descriptions.

Some ADXF features, in addition to full-instantiation,
and responsive to principles expressed in [10], are:

It mimics SIF to the extent possible, retaining basic 
accelerator objects and their attributes.

It represents the accelerator by a flattened tree of 
accelerator nodes, elements and sequences.
Sequences can be nested to an arbitrary depth and 
may have references to the corresponding design 
beam lines they instantiate.

It is minimally complete, meaning it describes all 
components that influence or monitor particle 
motion, and only those.

It is extensible, meaning that it supports (but does not 
encourage frivolous) extension in two ways: 
introduction of new element types and introduction 
of new “element buckets” (parameter containers) 
common to all element types.

Shared (for example between two rings) lines are 
supported. 

The description should be “consistent across different 
phases, from conceptual design, through engineering 
design and analysis, to operation.” Though ADXF 
provides only a flat “operational” view of the 
accelerator, it provides a mechanism for
reconstruction of the idealized hierarchical model 
from which it descended.

Containing only element and lattice descriptions, and 
no beam dynamics, ADXF is usable without 
prejudice by any physical method.

The principles of “multiple-realization” and 
“compliance with computer standards” expressed in 
[10] are met by the adoption of XML.

ADXF 2.0

ADXF has been updated to version 2.0. The most 
substantial revision was motivated by the requirements of 
integrating E.Forest's PTC concept of “fibre bundle”[13]
into the ADXF model. The essential features of this 
integration are illustrated in Fig. 1, which can be 
compared to Fig. 2. In both cases the core description is
tree of elements and sequences (or sectors) of elements. 
(Roughly speaking) in ADXF2.0 this tree is broken and 
expanded in order to permit the assignment of positioning 
and orientation attributes to whole sectors which are then 
referred  to as ``frames'' aliasing PTC “fibre”. In this way 
positioning attributes can be added to “on-the-bench” or 
“uninstalled” elements to produce “as-installed” elements. 

Figure 1: ADXF 1.0 model.

Figure 2: ADXF 2.0 model. 

Though the 1.0 and 2.0 versions appear different in the 
figures, much of the apparent difference has come from 
the need for treating positioning and powering attributes 
differently. The instantiation of (intentional) “survey”
positioning (possibly different for the same element in 
different lines) and (presumeably unintentional, but 
necessarily tied to a physical element) offsets and 
rotations are also exhibited in Fig.2. The ADXF2.0 model 
is built from five main ingredients:

An accelerator is any sector selected by the user.
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A sector is a named sequence of frames with 
installed accelerator components.

A frame is a layout of rigidly-associated installed 
components. It contains a relative position, 
misalignments, and a reference to an associated 
sector or accelerator element.

An accelerator element is an accelerator device or 
positioned physical effect, such as a beam-beam 
interaction. All accelerator elements have the same 
structure: name, length, and an open collection of 
attribute sets. An element may also have a reference 
to its design version.

An element attribute set is a container of attributes 
relevant to a single physical effect or feature, such as 
magnetic field, aperture, etc.

The concept of a frame as a layout of installed 
components addresses several accelerator applications.  
First, it facilitates the study of multi-line systems sharing
the same sector. The list of such applications is extensive: 
injection and extraction systems, interaction regions, 
recirculators, and many others.  Second, the new ADXF 
model becomes consistent with the detector description 
based on positioned volumes. For example, according to 
the ROOT Users’ guide [14]:

“The basic components used for building the 
logical hierarchy of the [detector] geometry are the 
positioned volumes called nodes. Volumes are fully 
defined geometrical objects having a given shape and 
medium and possible containing a list of nodes. 
Nodes represent just positioned instances of volumes 
inside a container volume”. 

Such similarity not only justifies the new accelerator 
model, but also facilitates the integration of accelerator 
and high energy physics software for modeling the cross-
domain tasks, e.g. background study. 

Extensibility of accelerator element types and attribute

sets in ADXF 2.0 is provided by the consistent object-
oriented mechanism of the XML schema, which 
eventually resolved the deficiencies of the previous DTD-
based approach. For example, all MAD elements are 
implemented as descendents of the ADXF generic 
accelerator component, and we can use the conventional 
MAD terminology with the XML flavor:

 <elements>
   <marker name=“mk1” />
   <sbend name=“bend” l=“lq” angle=“deltheta” />
   <quadrupole name=“quadhv” l=“lq” k1=“kq1” />
   …
 </elements>

In addition, in the boundary of the same schema, the MAD-
oriented design description can be connected with another 
view or extended with SXF-like operational collection of
generic elements:

<elements>
    <sbend name=“d0mp08” l=“3.58896”  
                                         angle=“-0.0151186” />

<element name=“bi8-dh0” design=“d0mp08“>
    <mfield b=“0 0 0.005476 0.033503” 
                  a=“0. 0 -0.010166 0.024366” />
  </element>
  …

</elements>

where the <mfield> tag is associated with a set of 
measured magnetic field attributes of the bi8-dh0 element,
designed after the MAD sbend d0mp08.

Another immediate practical advantage of the XML 
schema is its adherence to the collection of the schema-
aware tools, editors or postprocessors. Such a schema-
aware editor presents a full set of all legal options for 
every entry and is guaranteed to produce only schema-
compliant lattice descriptions. As well as eliminating 
many sources of error, this facilitates the subsequent
generation of other lattice descriptions. There are 
powerful XML tools for converting a schema-compliant 
file into other formats. Hence, for example, though it is 
difficult (and not necessary possible in principle) to 
convert a MAD file into and ADXF file, it is very easy 
and robust to convert an ADXF file (satisfying a MAD-
specific schema) into a MAD file. For a given lattice, to 
apply a simulation code that requires proprietary input is 
therefore relatively straightforward once one has the 
lattice in ADXF form. Finally, intermediate, tuned-up 
lattices, typically fully-instantiated in numerical form, can 
be edited using the same tools as used on the original 
design lattice. 

PROPAGATOR FORMAT EXTENSION

Multi-purpose accelerator program input files usually 
combine the accelerator element description along with 
directives defining the calculations to be performed. As 
discussed in the introduction, this organization is 
appropriate for small, relatively specialized tasks.

Rather than following this approach, to improve the 
code modularity, the Accelerator Propagator Framework 
was introduced into UAL [15]. This is an environment in 
which a variety of (independently-generated) tools can be 
applied to the same accelerator lattice. The first step was 
to adopt the Element-Algorithm-Probe conceptualization 
of accelerator simulation ingredients. Elements are 
magnets, RF cavities, etc. Their parameters are fully 
described in the ADXF file. All quantities whose 
evolution  around the lattice are of interest and are 
mathematically-calculable are referred to as probes.
Examples are individual particle coordinates, bunch
centroid coordinates, transfer matrices, transfer maps 
(expressed as truncated power series), Twiss functions, 
and so on. Finally, algorithms are the mathematical 
formulas which implement propagation computationally.
The APF object model is shown in Fig. 3, where the 
element and algorithm concepts are represented 
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correspondingly by the Accelerator Node and Propagator 
Node.

Figure 3: Accelerator Propagator Framework

With this organization, all that remains is to associate
each element with the algorithms to be used to evolve all 
needed probes through the element. This is the function of
a separate file called Accelerator Propagator Description 
Format (APDF). Since this file can be put into one-to-one 
correspondence with the full sequence of elements 
making up the lattice, it is, logically, a list of algorithm 
names, one for each element. The APDF file might 
therefore be expected to have roughly the same length as 
the ADXF file to which it is to be associated. In fact, 
since the same algorithms are applied to whole classes of 
elements, with natural defaults, the APDF file is typically 
very short. In addition, in APDF each propagator may be 
associated with an entire accelerator sector. This scheme 
allows one to bridge the gap between element-by-element 
and map-based approaches.

A sample APDF file (used in a recent emittance growth 
calculation) is:

<apdf>
<propagator id=“stringsc” accelerator=“ring”>
<create>
<link algorithm=“DriftStringSCKick” types=“Default” />
<link algorithm=“DriftTracker” types=“Marker” />

<link algorithm=“DriftStringSCKick” types=“Drift” />
<link algorithm=“DipoleStringSCKick” types=“Sbend”/>
<link algorithm=“MltTracker”
  types=“Quadrupole|Sextupole|Multipole|[VH]kicker”/>
<link algorithm=“RFCavityTracker” types=“RfCavity”/>
</create>

</propagator>
</apdf>

(To make this listing fit the column format of this report, 
the full designations of the classes to which these methods 
apply have been suppressed; the full class designation is, 
in fact, required.) This file controls evolution through an 
arbitrary lattice with intrabeam space charge forces taken
into account. To turn off all space charge calculation (for
example because it is too time-consuming) and revert to 
default tracking (which is thin element tracking) one need 
only remove the lines containing methods whose names 

include “StringSCKick” in this file. No changes are 
needed in the ADXF file. (It is philosophically 
satisfactory that a lattice description has no reason, in 
principle, to be aware of the algorithms to be used in 
simulating beam evolution through the lattice.)

Briefly, the attributes of the links listed in the APDF file 
are:

A sector is a pair of begin and end accelerator 
element design names, e.g. d1, qf1 defining a sector 
that includes d1 but not qf1.

An element is a regular expression that selects 
accelerator nodes by their name; e.g. q1|q2.

 A type is a regular expression that selects accelerator
nodes by their type; e.g.  Quadrupole|Sextupole.

 An algorithm is the full class name of the associated
propagator; e.g. TEAPOT::MltTracker.

Sector, elements, and types define three different 
approaches for selecting families of accelerator elements. 
In case of overlapping, sector-based priority is first, 
element-based priority is second, and type-based priority 

is third.

APDF addresses a spectrum of applications ranging 
from small special tasks to full-scale, realistic models
encompassing heterogeneous effects. Some modeling 
scenarios are indicated in Table 1. 

Table 1: Some APDF-based applications

Application Configurable Propagator

1 Longitudinal beam 
dynamics

2D matrices + RF tracker

2 Linear lattice 
functions

4D tracker

3 Fast tracking Combination of maps and 
thin elements

4 Instrumentation 
modeling, e.g. beam 
transfer function

#3 + propagators for active 
diagnostics devices, such 
as AC dipole

5 Dynamic aperture, 
halo, IR background 
investigation

element-type association

6 Special localized
effect, beam-beam, 
impedance, ions

#3 or #5 + propagator for 
special effect

7 Post-processing 
analysis (e.g. MIA) 
and visualization

all of the above + post-
processing aware virtual 
devices

8 Full-scale “realistic” 
model

All of the above

COMPOSITE APPROACH

The variety and evolution of different approaches 
suggested that an optimal program interface must be built 
as some their combination. The choice of the particular 
structure depends on many factors: legacy of accumulated 
programs, scope of the project applications, available 
resources, background and preferences of developers, and 

Accelerator Node

Propagator
Sequence

Propagator
Component

begin and
end nodes

Bunch

Twiss

TEAPOT::BasicPropagator

Taylor Map

…

Propagator Node Probe

TIBETAN::BasicPropagator

…

nodes
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many others. According to our experience with the 
development of Unified Accelerator Libraries (UAL) 
environment, we recognize the following three 
approaches:

Application Programming Interface

Lattice Exchange Format

Propagator Description Format
In UAL, the user interface is implemented by the C++ 
class Shell serving as a project-oriented façade to 
underlying structures and algorithms. The user application 
starts with reading the exchange format generated from 
the MAD-X design toolkit, online model or defined by 
user. To address both legacy and new applications, UAL 
supports two lattice exchange formats: SXF and ADXF 
2.0. After the initialization of the accelerator containers, 
the user can access and directly update them with the C++ 
interface, for example, for distributing random errors, 
simulating tune modulation, and so on.  Within the Model 
Player interactive analysis environment [16] the 
Accelerator Propagator Description Format (APDF) has 
become a necessary part of all present RHIC offline and 
online applications. 

REFERENCES

[1] E. Keil, “Computer Programs in Accelerator Physics,” 
AIP, 1985

[2] Workshop for the Standardization of MAD Input 
Language for Beam Optics, Stanford, 1984

[3] D.C. Carey and F.C. Iselin. “Standard Input Language 
for Particle Beam and Accelerator Computer 
Programs,” Snowmass, Colorado, 1984

[4] M. Berz, “Computational aspects of design and 
simulation: COSY INFINITY.” Nuclear Instruments 
and Methods, A298:473, 1990

[5] L. Michelotti, “MXYZPTLK: A practical, user-
friendly C++ implementation of differential algebra: 
Users’s guide,” FN-535, 1990

[6] N. Malitsky, A. Reshetov, and G. Bourianoff, 
“PAC++: Object-Oriented Platform for Accelerator 
Codes,” SSCL-675, 1994

[7] STAR team, private communication, 2006
[8] A. Gheata, “GEOM: Status and developments,”

ROOT Workshop, 2005
[9] L. Schachinger and R. Talman, “Teapot: A Thin-

Element Accelerator Program for Optics and 
Tracking,” Particle Accelerators, 22, 35(1987)

[10] F.C. selin, E. Keil, R. Talman. Letter to ICFA Beam 
Dynamics Newsletter, 21 January, 1998

[11] F. Pilat et.al., “Standard eXchange Format (SXF) for 
Accelerator Description.” RHIC/AP/155, 1998

 [12] N. Malitsky and R. Talman “Accelerator Description 
Exchange Format,” ICAP, 1998

[13] E. Forest et al., “Polymorphic Tracking Code PTC,”

KEK Report 2002-3.
[14] R. Brun et al, “ROOT User’s Guide,” 
        http://root.cern.ch
[15] N. Malitsky and R. Talman, “The Framework of 

Unified Accelerator Libraries,” ICAP, 1998, 
http://www.ual.bnl.gov

[16] V. Fine, N. Malitsky, R. Talman, “Interactive 
analysis environment of Unified Accelerator 
Libraries,” Nuclear Instruments and Methods, A 559, 
2006

THM2IS01 Proceedings of ICAP 2006, Chamonix, France

302 Pre- and Post-Processing
Standardization


