
THE UNIVERSAL ACCELERATOR PARSER ∗

D. A. Bates, LBNL, Berkeley, CA 94720, USA
D. Sagan, Cornell University, Ithaca, NY, 14850, USA

A. Wolski, University of Liverpool, UK, and the Cockcroft Institute, Daresbury, UK.

Abstract

To promote the sharing of lattice description files be-
tween modeling codes, a new lattice description standard
named the Accelerator Markup Language (AML) has been
developed. Based upon the standard eXtensible Markup
Language (XML) format, AML has extensive capabilities
for modeling accelerators. Additionally, since it is based
upon XML, AML has the flexibility to be easily extended
to satisfy changing requirements. This flexibility allows for
AML files to be used beyond lattice descriptions to act as a
database of accelerator information.

In conjunction with AML, an open source software li-
brary called the Universal Accelerator Parser (UAP) is be-
ing developed. This library, when integrated into a pro-
gram, enables the reading of AML lattice files. Included
in the UAP software are routines for expression evaluation
and beam line expansion so that a “flat” lattice that repre-
sents each lattice element is easily constructed. Further-
more, the UAP library is structured so that it can accom-
modate language modules that read in lattice files using
formats other than AML. Specifically, modules for reading
MAD-8 and MAD-X format lattices are being developed.
As an added benefit, the UAP can act as a translator be-
tween the languages it has modules for.

INTRODUCTION

The complexity of modeling high energy particle beams
has resulted, world wide, in the development of a number
of modeling programs. Since each program has its own
strengths and weaknesses, it is often desirable to analyze
a given accelerator using a variety of such programs. Ad-
ditionally, cross-checking results between different codes
is often essential for validating these programs. Different
programs generally require input files in different formats
and this is a significant obstacle to applying a variety of
such programs to a single accelerator project. At present,
there is no generally accepted lattice format that is suffi-
ciently comprehensive to meet the needs of the accelerator
community.

To address this problem, a lattice description format
called Accelerator Markup Language (AML) has been cre-
ated [1]. AML is based upon the standard eXtensible
Markup Language (XML) [2] which provides the neces-
sary flexibility for AML to be easily extended to meet
changing requirements. Moreover, the extensibility of

∗Work supported by the National Science Foundation and by the US
Department of Energy under contract numbers DE-AC02-05CH11231.

XML enables AML files to be used beyond lattice descrip-
tions to include such information as the control system con-
figuration, blueprint and other documentation, magnet his-
tory information, etc. In short, AML could be used as the
basis for a complete database of an accelerator laboratory
complex.

A major impediment to the adoption of a lattice descrip-
tion format like AML is the complexity of the software that
is needed to read an input file. This complexity is com-
pounded with AML for two reasons. First, the attributes of
machine elements can be expressed using arithmetical ex-
pressions. Furthermore, the ordered list of lattice elements
that comprise the accelerator may be expressed using suit-
able subsequences (called “sectors” in AML) of machine
elements which are then used as components in defining
other sectors. Thus, any software has to be able to deal not
only with expression evaluation, but also with “lattice ex-
pansion” in which the hierarchy of sectors is combined to
give a single “flat” list of lattice elements that can be used
for tracking and other types of analysis.

To alleviate the need to independently create the neces-
sary software for each and every program, a software li-
brary, known as the Universal Accelerator Parser (UAP), is
being developed to perform the necessary parsing, expres-
sion evaluation, and lattice expansion for AML lattice files.
A centralized source for the parsing software has the added
benefit that if AML is modified or extended to meet chang-
ing requirements, these changes can be quickly propagated
to the programs that use the UAP library.

The UAP library is being designed in a modular fashion
so that, with the inclusion of appropriate software mod-
ules, the UAP library can be extended to read in additional
lattice formats. Such a module needs only to be able to
parse a lattice file of the given format and then translate the
information to AML form. Once this is done, the UAP’s
expression evaluation and lattice expansion routines can be
used to produce a flat lattice. Since expression evaluation
and lattice expansion are, by far, the most complicated part
of the process for any reasonably sophisticated language,
adding a language module to the UAP library is a far sim-
pler task than coding from scratch. Currently, modules for
MAD-8 and MAD-X are being developed. Furthermore,
the UAP can then act as a translator between the languages
it has modules for.

With AML, one can set up element dependencies where
the settings of one element affect attribute values of other
elements. In conjunction with this, the UAP library pro-
vides bookkeeping routines for managing these dependen-
cies. This creates a powerful tool for simulating the control

Proceedings of ICAP 2006, Chamonix, France THM2IS02

Computational Needs (Projects and Challenges)
Project Status Reports

303

Node:

Child Node Child Node

Parent Node

Attribute:

Name

Name = Value

Attribute: Name = Value

Figure 1: Schematic illustration of the basic UAP Node.
The basic node has a name, a set of attributes, a parent
node and a set of children.

system. For example, a power supply controlling a set of
quadrupoles may be simulated with AML. An analysis pro-
gram can vary the simulated power supply voltage and the
lattice model set up by the UAP is kept up-to-date, without
the need for additional code within the analysis program to
maintain the correct dependencies.

ACCELERATOR MARKUP LANGUAGE

In order to understand the UAP code, it is important to
understand something of the structure of AML. Since AML
is based upon XML, AML represents data in a hierarchi-
cal fashion. The root (top level) node is <laboratory>.
Among other things, the <laboratory> node can have
<element> subnodes (children) describing the machine el-
ements of an accelerator and <machine> subnodes describ-
ing the sequence of elements that make up the lattice. Mul-
tiple <machine> nodes can be present defining different
machines and these machines may be connected together
to form a complete accelerator system. For example, one
machine can define a LINAC which is then connected to
another machine representing a ring which, in turn, is con-
nected to multiple transfer lines, etc. A <machine> is made
of <sector>s which are lists of elements. A <sector> is
essentially equivalent to a MAD “list” or “sequence”.

AML has four concepts that complicate the bookkeep-
ing that must be done to create and maintain a flat lattice:
“superposition”, “multipass”, “controllers”, and “girder”.
These concepts are explained below.

The position of an element along a beamline may be de-
termined by its position in a list of elements comprising the
lattice. Alternatively, the position may be given explicitly
with respect to some reference point. This latter case is
known as superposition:

<sector name = "this_sect">
<element ref = "sol" />

<element ref = "drft" />
<element ref = "q2"

superimpose_at = "0.8"
ref_element = "sol" />

</sector>

This example shows a <sector> comprised of three
<element>s. The center of the third <element> q2 is
positioned 0.8 meters from the center of <element> sol.
Superposition can complicate matters since, as in real ma-
chines, elements are allowed to overlap spatially.

The multipass construction is used where the beam goes
through parts of the machine multiple times. For example,
in an Energy Recovery Linac, the beam may go through a
LINAC section first to accelerate the beam and then to de-
celerate it to retrieve its energy. To model this, <sector>s
in AML may be designated as multipass:

<sector name = "ERL">
<sector ref = "linac"

multipass = "true" />
<sector ref = "turn_around" />
<sector ref = "linac" multipass = "true"

reflection = "true" />
</sector>

In this example, the beam first goes through the LINAC
section, is turned around, and then goes back through the
LINAC in the opposite direction. The utility of using mul-
tipass will be discussed below.

With AML, <controller> nodes may be defined that
simulate the effects of anything which affects machine pa-
rameters, such as klystrons, power supplies, or control
room knobs. For example:

<controller name = "ps1"
variation = "ABSOLUTE" >

<control element = "q1"
attribute = "multipole:k1"
coef = "2.3 * sin(ps1)" />

<control element = "sol"
attribute = "multipole:ks"
coef = "-5.7 * ps1" />

</controller>

In this example, the <controller> controls the k1 at-
tribute of a quadrupole and the ks solenoid strength at-
tribute of a solenoid.

A <girder> is a support structure that supports a set
of elements. The spatial orientation of an element on the
girder is a combination of the orientation of the girder and
the orientation of the element with respect to the girder.
Thus a girder may be thought of as a special form of a con-
troller.

UNIVERSAL ACCELERATOR PARSER

The UAP software stores data using a model whereby
data is represented as a tree of nodes. The basic node
structure is schematically shown in Figure 1. The basic

THM2IS02 Proceedings of ICAP 2006, Chamonix, France

304 Computational Needs (Projects and Challenges)
Project Status Reports

Input Representation Subtree

Analysis
Program

UAP Internal Structure:

AML Representation Subtree

AML Flat Lattice Subtree

Parsing

InterfaceTranslation

Evaluation & Expansion

MAD
Input File

AML
Input File

Figure 2: Schematic diagram of the memory structure set up by the Universal Accelerator Parser. The UAP root node has
three children. The Input Representation Subtree (IRS) is a faithful representation of the information in the input file. The
AML Representation Subtree (ARS) is the equivalent AML representation. Lattice expansion and expression evaluation
lead from the ARS to the AML Flat Lattice Subtree (AFLS).

node structure has a name and a set of attributes, with each
attribute having an attribute name and an attribute value
(which is just a text string). This has a one-to-one corre-
spondence with XML syntax:

<node_name attrib1_name = "value1"
attrib2_name = "value2">

Additionally, a node has associated with it a set of child
nodes and, except for the root node, a parent node.

When a lattice file is read in, the UAP software sets up
three children of the root node as shown in figure 2. The
information in a lattice file is stored in the “Input Represen-
tation Subtree” (IRS). The IRS has a one-to-one correspon-
dence with the information in the input file (including com-
ments), so the reverse process of generating a lattice file
from an IRS is straightforward. If the original file was not
an AML file, the UAP software translates from the IRS to
the “AML Representation Subtree” (ARS). The ARS rep-
resents the lattice in AML format. If the input file is an
AML file, then the IRS and ARS are identical and no con-
version is needed. Lattice expansion and evaluation of any
mathematical expressions of the ARS leads to the “AML
Flat Lattice Subtree” (AFLS).

An example will make clear the roles of, and the rela-
tionships between, the three subtrees. Consider a MAD
file:

! MAD input file
q1: quad, l = 2*3
s2: sextupole
l1: line = (q1, 2*s2)
use, l1
beam, energy = 5.2

Using XML-like notation with indentation indicating tree
layout and the ending tags suppressed, the IRS structure in
memory that is created for this file would look like

<input_representation>
<doc>
"! MAD input file"

<element name = "q1"
key = "quadrupole" l = "2*3" />

<element name = "s2"
key = "sextupole" />

<line name = "l1">
<element name = "q1" />
<element name = "s2" repeat = "2" />

<use line = "l1" />
<beam energy = "5.2" />

Converting to the ARS involves such things as converting
from the units used by MAD to the units used by AML
(for example, converting GeV to eV), and replacing lines
by sectors, etc. The equivalent ARS for the above example
is:

<AML_representation>
<laboratory>
<doc>
"MAD input file"

<element name = "q1" />
<quadrupole>
<length design = "2*3" />

<element name = "s2" />
<sextupole>

<machine>
<sector name = "l1">
<element ref = "q1" />
<sector repeat = "2">
<element ref = "s2" />

<root_sector ref = "l1" />
<beam>
<energy design = "(5.2) * 1e9" />

Proceedings of ICAP 2006, Chamonix, France THM2IS02

Computational Needs (Projects and Challenges)
Project Status Reports

305

Conversion from the ARS to the AFLS involves expression
evaluation and lattice expansion:

<AML_flat_lattice>
<machine>
<tracking_lattice>
<element name = "beginning">
<element name = "q1">
<quadrupole>
<length design = "6" />

<element name = "s2">
<sextupole>

<element name = "s2">
<sextupole>

<beam>
<energy design = "5.2e9" />

An analysis program would convert the information from
the AFLS to whatever memory structure the program uses
for its calculations.

Adding a new language module involves creating code
for parsing a lattice and creating an IRS along with IRS to
ARS translation code. Back-translation and back-parsing
code to translate an ARS to an IRS and an IRS to a lat-
tice file would also be needed if translation from a different
language into the target language is desired. Since expres-
sion evaluation and lattice expansion are considerably more
complicated than parsing or IRS to ARS translation, the
UAP architecture allows for fairly simple incorporation of
different lattice languages. Conversion between different
languages involves reading in a file to create first an IRS
and then an ARS, and then back conversion from the ARS
to the appropriate IRS and finally to a lattice file.

When the ARS is built from the IRS and the AFLS is
built from the ARS, the UAP software maintains “twin”
pointers in the nodes which connect equivalent nodes in the
IRS, ARS, and AFLS. This provides support for lattice de-
sign work where a possible procedure could be as follows:

1. Read in a lattice file and construct an IRS, ARS, and
finally an AFLS.

2. Taking the AFLS as a starting point, use a modeling
code to vary a given set of parameters to optimize spe-
cific lattice attributes.

3. Using the twin pointers, find the nodes in the IRS cor-
responding to the parameters in the AFLS varied in
the optimization.

4. Modify the IRS nodes using the optimized values of
the parameters.

5. Construct a lattice file with the optimized values from
the IRS.

The result is a file that has the same layout as the original
file, but with optimized parameter values.

SUPERPOSITION AND MULTIPASS

As outlined in a previous section, the AML syntax al-
lows elements to be superimposed on top of other el-
ements as outlined above. When this is done, the
<tracking_lattice> that is created in the AFLS will
contain hybrid elements that represent the regions that are
created by the intersections of the elements. Using the su-
perposition example above, if elements sol and drft are
2 meters long and element q2 is 1 meter long, then the
<tracking_lattice>would contain the elements

Name Length Element Type
------- ------ ------------
sol|1 1.3 Solenoid
q1|sol 0.7 Hybrid quad/solenoid
q1|drft 0.3 Hybrid quad/drift
drft|1 1.7 drift

The q1|sol element represents the space where the
solenoid and quadruple overlap

while the sol|1 element represents the part of the
solenoid where there is no overlap. Similarly, the q1|drft
element represents the part of the quadrupole outside of the
solenoid and the drft|1 element represents the portion of
the drift not inhabited by the quadrupole. To be useful,
an accelerator modeling program would have to be able to
handle the hybrid elements that are generated. A major ad-
vantage of this approach is that the UAP software performs
all the necessary bookkeeping, making creation of flat lat-
tices easier and less error prone. This represents a signifi-
cant saving of time and effort in maintaining any analysis
program that uses the UAP software.

As an added benefit, as the <tracking_lattice> ele-
ments are constructed, UAP keeps a list of the original ele-
ments (in this example, sol, q1, and drft) in another part
of the AFLS. Appropriate pointers are maintained between
these “master” elements and the “slave” hybrid elements
they control. The UAP provides bookkeeping software so
that programs can vary the attribute values in the master
elements and have these changes mirrored in the attribute
values of the hybrid elements. For example, a change to the
solenoid strength in the sol element would be propagated
to the sol|1 and q1|sol hybrids.

A similar situation occurs with multipass sectors. Using
the multipass example above, if the linac sector looked
like:

<sector name = "linac">
<element ref = "A" />
<element ref = "B" />
...

</sector>

then the expanded lattice would have elements:

A|1, B|1, ..., B|2, A|2

The |1 and |2 suffixes indicates which pass through the
linac section it is. As in the case with superposition, A
and B master elements are set up with pointers between

THM2IS02 Proceedings of ICAP 2006, Chamonix, France

306 Computational Needs (Projects and Challenges)
Project Status Reports

these elements and the corresponding elements that appear
in the flat lattice. Again, the UAP’s bookkeeping routine
will make sure that changes in the attributes of the mas-
ter elements are reflected in their slave elements. Thus,
for example, if element A is given a positional offset, the
UAP bookkeeping routine will transfer the offset value to
the A|1 and A|2 elements.

Controller and girder elements work in a similar fashion.
The appropriate master elements are set up in the AFLS and
the UAP bookkeeping routine will update the appropriate
attribute values with changes in the master elements.

STATUS

The AML/UAP development project is a collaborative
effort among a number of laboratories and anyone who is
interested is invited to join the effort. The project home
page is at

http://www.lns.cornell.edu/~dcs/aml

The UAP software is written in C++. There is a Fortran90
interface planned to allow easy interoperability with For-
tran programs. Additionally, a Java port will be maintained
for platform independence. The UAP code is open source
and is released under the GNU Lesser General Public Li-
cense [4]. The UAP source code is maintained in a CVS
repository and is available at the SourceForge.com [3] web
site.

CONCLUSION

The Universal Accelerator Parser software is currently
under development for use as a common library among ac-
celerator codes for lattice parsing. Its use holds the promise
of greatly improving the interoperability between different
programs. As an added benefit, the UAP code can translate
lattice files between the languages it has modules for. In
particular, MAD-8 and MAD-X modules are being devel-
oped.

Additionally, the UAP library contains bookkeeping rou-
tines to simplify the task of simulating the control system,
and defining and manipulating complex beamline features
such as physically overlapping elements, and element sup-
port structures.

THANKS

Thanks must go to the people who have contributed to
the AML/UAP project. In particular, we would like to
thank Yves Roblin for developing the AML Schema. Ad-
ditionally, Mike Forster, Theo Larrieu, Tom Pelaia, Frank
Schmidt, Peter Tenenbaum, Nick Walker, Mark Woodley
as well as Nikolay Malitsky and Richard Talman are to be
thanked for useful discussions.

REFERENCES

[1] D. Sagan et al., The Accelerator Markup Language and
the Universal Accelerator Parser”, 2006 Europ. Part. Acc.
Conf., Edinburgh (2006).

[2] XML was developed by the World Wide Web Consortium:
http://www.w3.org/XML

[3] See: http://sourceforge.net/
projects/accelerator-ml

[4] See: http://www.gnu.org/licenses/lgpl.html

Proceedings of ICAP 2006, Chamonix, France THM2IS02

Computational Needs (Projects and Challenges)
Project Status Reports

307

