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Abstract

Transient 3D simulations are carried out for two types
of superconductive dipole magnets. Eddy-current effects
in the yoke are treated by homogenising the laminated
iron composite whereas interstrand eddy-current effects are
resolved by either a cable magnetization model or a ca-
ble eddy-current model. The simulations reveal the Joule
losses in the magnets.

INTRODUCTION

Within the Facility for Antiproton and Ion Research
(FAIR) at the Gesellschaft für Schwerionenforschung
(GSI) in Darmstadt, two new synchrotrons, SIS-100 and
SIS-300, are planned. Both will be equipped with su-
perconductive dipole magnets in order to achieve higher
magnetic flux densities and to reduce the operating cost
[16, 10]. Typical for the installation is the relatively high
ramping rate which amounts to 4 T/s for the SIS-100 dipole
magnets. Substantial eddy-current effects are expected
which may deteriorate the aperture-field quality and may
cause excessive Joule losses. Eddy currents crossing the
relatively low thermal and electric insulation between the
cable strands cause a deterioration of the aperture field
along the whole magnet length and can be computed by
2D finite-element models. Eddy currents appear at the end
parts of the yoke due to axial magnetic flux components.
They have less influence on the overall field quality but may
introduce severe Joule losses. The quantification of these
eddy-current effects requires a 3D model. In this paper, an
appropriate, transient, nonlinear, 3D magnetodynamic for-
mulation is proposed which deals with both eddy-current
phenomena. Because of the axial lamination of the yoke
parts and because of the geometrical details inside the su-
perconductive coils, homogenization techniques have to be
introduced in order to avoid the necessity of resolving small
spatial scales in the computational grid.

TRANSIENT 3D MAGNETODYNAMIC
FORMULATION

Effects related to the change of the electrical energy den-
sity can be neglected with respect to the effects correspond-
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ing to the change of the magnetic energy density and the
loss density. Therefore, the displacement current density
is omitted in Ampères law, yielding ∇ × �H = �J where
�H is the magnetic field strength and �J is the current den-
sity. The magnetic flux density is �B = µ �H where µ is
the permeability which depends on �B and which may be
anisotropic, e.g., due to the homogenization described be-
low. The magnetic flux density is forced to be divergence-
free by the definition of the magnetic vector potential �A
such that �B = ∇ × �A. The integration in space of the
Faraday-Lenz law relates the electric field strength �E to the
magnetic vector potential and to the electric scalar potential
φ, i.e., �E = − ∂

∂t
�A −∇φ. The current density �J is related

to the electric field strength by the anisotropic conductivity
σ, i.e., �J = σ �E. The introduction of the potentials and
material relations into Ampères law results in

∇×
(
ν∇× �A

)
+ σ

∂ �A

∂t
= �Js (1)

with the reluctivity ν = 1/µ and the source-current density
�Js = −σ∇φ.

We will consider two different methods for discretising
(1). Both for the case of the Finite Integration Technique
(FIT) as for the case of the lowest order Whitney Finite El-
ement Method (FEM), the degrees of freedom are the mag-
netic vector potentials integrated along the primary edges
of the computational grid, and are collected in the vector
�a. The magnetic fluxes

��

b through the primary faces fol-
low from applying the discrete curl operator at the primary
grid, i.e.,

��

b = C�a. A dual grid is constructed with the pri-
mary cell centers as dual grid points. The magnetic field
strengths

�

h integrated along the dual edges are related to
the currents

��

j through the dual faces by
��

j = C̃
�

h where C̃
is the discrete curl operator defined at the dual grid. The
divergence-freeness of the magnetic fluxes and the currents
are represented on the discrete level by the expressions
S

��

b = 0 and S̃
��

j = 0 where S and S̃ are the discrete diver-
gence operators at the primary and dual grid respectively.
For topological reasons, the discrete gradient operators G
and G̃ at both grids are related to the discrete divergence
operators by G = −S̃T and G̃ = −ST and both discrete
curl operators are related by C̃ = CT . The discrete mate-
rial relations are expressed by

�

h = Mν

��

b and
��

j = Mσ
�e

where Mν is the reluctivity matrix and Mσ is the conduc-
tivity matrix.
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The Finite Integration Technique and the Finite Element
Method differ in the discretization of the material relations.
For the Finite Integration Technique applied to an orthogo-
nal hexahedral grid pair, the material matrices are diagonal.
In a homogeneous region of the model, the entries

M(fit)
ν,q,q = ν

|L̃q|
|Sq| (2)

of the reluctivity matrix discretize the relation between the
magnetic flux

��

bq through the primary facet Sq to the mag-
netic voltage

�

hq along the dual edge L̃q. The entries

M(fit)
σ,j,j = σ

|S̃j |
|Lj | (3)

of the conductivity matrix relates the current
��

j j through the

dual facet S̃j to the electric voltage �ej along the primary
edge Lj . The material matrices used in the rest of the pa-
per are slightly more general and allow non-homogeneous
model regions and non-conforming grids. Their construc-
tion is described in [14] and [1].

In the case of the Finite Element Method, the degrees
of freedom are expanded into the cells by the lowest-order
Whitney edge functions �wj . A compatible set of lowest-
order facet functions �zq serves for discretising the magnetic
flux. In general, the material matrices are not diagonal.
Their entries are defined by

M(fe)
ν,p,q =

∫
Ω

�zp · ν�zq dΩ ; (4)

M(fe)
σ,i,j =

∫
Ω

�wi · σ �wj dΩ (5)

where Ω is the computational domain. The discretization
of the source-current density reads

��

j
(fe)

s,i =
∫

Ω

�wi · �Js dΩ . (6)

In the following, FE and FIT discretizations will be used
equivalently. When differences appear in the construction
of material matrices, superscripts ”(fit)” and ”(fe)” will be
used.

For both approaches, the discrete counterpart of (1) reads

C̃MνC�a + Mσ
d�a
dt

=
��

j s . (7)

Because Mσ has zero entries for the non-conductive re-
gions, (7) is a system of differential-algebraic equations.
The system is discretized in time by a four-stage singly
diagonally implicit Runge-Kutta (SDIRK) method and re-
quires the successive solution of four nonlinear systems of
equations of the form(

C̃MνC + αMσ

)
�a = f (8)

where the particular SDIRK method determines the coeffi-
cient α and the construction of the righthandside f from

��

j s

Figure 1: Magnetic flux at the end parts of the SIS-100
magnet.

and the solutions at the previous time steps. The ferromag-
netic saturation in the yoke causes Mν(

��

b) to depend on the
magnetic fluxes

��

b = C�a. The system (8) is linearized by
the successive substitution approach.

HOMOGENISATION OF THE
LAMINATED YOKE

To avoid eddy currents along the axial direction, here co-
inciding with the z-direction, the magnet yoke is laminated
with respect to the z-direction. Nevertheless, in the end re-
gions of the magnets, significant eddy-current effects are
generated, especially due to the z-component of the mag-
netic flux (Fig. 1). The thickness of an individual lamina-
tion is 1 mm and therefore substantially smaller than the
length of the magnet (more than 1 m). As a consequence,
explicitly resolving individual laminations in the computa-
tional grid is not possible. Instead, the particular behavior
of the laminated stack is represented by an equivalent ho-
mogeneous material. The laminated structure results in an
anisotropy whereas the iron material causes the homoge-
nized material to be nonlinear. The homogenized material
is described by the anisotropic conductivity and reluctivity
tensors σ = diag(σxy, σxy, 0) and ν = diag(νxy, νxy, νz)
where the homogenized material parameters are

σxy = γσFe (9)
1

νxy
=

γ

νFe
+

1 − γ

νct
(10)

νz = γνFe + (1 − γ)νct (11)

where σFe and νFe are the conductivity and the reluctiv-
ity of the iron material, νct is the reluctivity of the coating
material and γ is the stacking factor. Because of the depen-
dence of νFe on the magnitude of the magnetic flux density,
ν has to be updated in every nonlinear step. This homog-
enization approach is the rather rudimentary, but is suffi-
cient to model the laminated structure up to a sufficient ac-
curacy [7]. More elaborated homogenization schemes are
described in e.g. [6].
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Figure 2: Dipole magnetic field in a
cos φ-type magnet.
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Figure 3: Geometry of a Rutherford cable.

HOMOGENISATION OF THE
SUPERCONDUCTIVE COILS

Superconductive cable

The cable of a superconductive coil is typically a layered
arrangement of strands which is sometimes transposed and
keystoned in order to provide a good fit to the overall ge-
ometry (Fig. 2). Each strand is a copper wire in which su-
perconductive filaments are embedded. The commercially
available Rutherford cable consists of two transposed lay-
ers of strands with NbTi-filaments (Fig. 3). Unless the fil-
aments are saturated or eddy currents appear, the entire
current load flows through the superconductive filaments.
Time-varying magnetic fields cause persistent currents in
the filaments and coupling currents between several fila-
ments inside the same copper wire [15]. These effects
are typically modeled as a superconductive hysteresis ef-
fect [13]. The strand coating is of a limited resistance such
that the current can redistribute in case of a quench and
such that a sufficiently low thermal insulation is present
[17]. Hence, time-varying magnetic fields incident to the
superconductive cable also generate inter-strand or cable
eddy currents which are migrating between different ca-
ble strands [11]. The insulation of the entire cable is of a
substantially higher quality and prevents current migration
between different turns of the coil. Resolving the individ-
ual strands and their insulation within an overall FE model
of the device would lead to unacceptably large models due
to the large differences in size between the device and the
cable cross-sections. Therefore, the application of standard
transient FE tools is not feasible in practice. Though oc-
curring at microscopic scale, cable eddy-current effects can
not be neglected in the simulation of ramped superconduc-
tive magnets. Here, homogenization techniques are pre-
sented which model the cable behavior up to a sufficient
accuracy without requiring the cable geometry to be con-
sidered in full detail [3, 2].

Analytical cable eddy-current models

In analytical models, cable eddy-current effects are rep-
resented by a cable magnetization

Ms = −τcable
d �B

dt
· �es (12)

which depends on the change of the incident magnetic
field �B, a cable time constant τcable and the orientation
of the current loop as represented by the normal vector
�es = (cos ϕs, sin ϕs) [15]. Analytical cable magnetiza-
tion models relate the eddy-current magnetization directly
to the change of the magnetic flux density and thus combine
the laws of Faraday-Lenz and Ampère by relying upon a-
priori knowledge of the eddy-current paths (Fig. 4). The
cable time constant is measured or derived by analytically
averaging the eddy-current effect over many current loops
in the considered cable geometry [12]. For the example
of Rutherford cables, two different kinds of cable eddy-
current paths are distinguished: rectangular paths which
consist of two neighboring strands and carry so-called ad-
jacency eddy currents, and diamond-shaped paths which
are formed by two strands of different layers and two cross-
over points and carry cross-over eddy currents (Fig. 3).
Both effects are characterized by their time constants τpa

and τpc respectively.

Cable magnetization model

The cable eddy-current effects are modeled by a
magnetising-current term

∇× (νMs�es) = ∇×
(

ντ∇× ∂ �A

∂t

)
(13)

rather than the eddy-current term σ ∂
∂t

�A in (1) [5]. Here,
τ = τpa�epa : �epa + τpc�epc : �epc denotes the anisotropic
macroscopic time constant, combining the time constants
τpa and τpc of the occurring cable eddy currents with the
unit vectors �epa and �epc perpendicular to the corresponding
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Figure 4: SIS-100 cable: current density Jz induced by a time-varying magnetic field Bx causing a magnetization Mx.

eddy-current paths. In the discrete setting of (7), Mσ
d
dt

�a is

replaced by C̃Mντ C d
dt

�a. The magnetization matrix Mντ

is assembled similarly as in (2) and (4), e.g., in the FE case:

M(fe)
ντ,p,q =

∫
Ω

�wp · ντ �wq dΩ . (14)

Due to the anisotropic character of τ , Mντ is non-diagonal,
even for the FIT applied on an orthogonal grid pair. The
cable magnetization model relies upon a few cable time
constants determined by analytical models or by measure-
ments, which may lead to inaccurate results.

Mixed cable eddy-current models

More accurate models for cable eddy-current effects
have been proposed and discussed [5, 2, 4]. As resolv-
ing individual strands is impossible in practice, a homog-
enization of the complicated coil geometry has to be car-
ried out. The model should allow for current redistribu-
tion at microscopic scale and prevent currents to couple be-
tween different cable turns, even when the insulation lay-
ers are not resolved by the mesh. The composite struc-
ture of the coil is modeled by an anisotropic conductiv-
ity σcoil. The winding direction �twind, the short cross-
sectional direction �tshort and the long cross-section direc-
tion �tlong are determined in all mesh cells inside the coil
by the geometric modeler. The diagonal conductivity ten-
sor σlocal = diag(σwind, σshort, σlong) with respect to this
local coordinate system is transformed into the global, spa-
tially dependent conductivity tensor σglobal = RT σlocalR
where R is the rotating operator between the local coordi-
nate system and the global coordinate system. The conduc-
tivity related to the global coordinates is assembled into the
conductivity matrix Mσ by the procedures defined by (3)
and (5).

The anisotropic conductivity models the finite resistance
between the parallel wires within the cable cross-section,
but does not yet reflect the perfect insulation between the
windings. The primary edges crossing insulation barriers
are identified and their indices are collected in the set S.
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Figure 5: Eight considered magnet configurations.

A diagonal matrix Z is constructed such that Ze,e = 0
when e ∈ S and Ze,e = 1 when e /∈ S. The modified
conductivity matrix ZMσZ accounts for the perfect inter-
turn insulation. For the SIS-300 magnet, the set S is found
by first cataloguing all primary nodes according to the coil
turn in which they lay and then searching for all primary
edges connecting nodes of different coil turns. If the mesh
length is substantially larger than the thickness of the cable,
the same procedure is carried out, but with fictitious turns
with a larger cross-section.

RESULTS FOR THE SIS-100 MAGNET

A eighth of the SIS-100 magnet is modeled. The yoke
has a stacking factor γstack = 0.98 and a conductivity of
κxy = 3.2e6 S/m. The ramping of the magnet and the
end-winding parts cause the reluctivity of the iron to de-
pend on both space and time. The simulations are carried
out by a FIT model with approximately 30000 degrees of
freedom (dofs) and one with approximately 100000 dofs.
The eddy-current losses per cycle are 25.9 J and 22.7 J for
the small and larger model respectively. The difference in-
dicates that a very fine mesh is needed to obtain reliable
results. Comparable results for the SIS-100 magnets are
given in [9] and [8]. To study a possible reduction of the
eddy-current losses by modifying the coil and the yoke,
eight configurations are simulated (Fig. 5). Four config-

Proceedings of ICAP 2006, Chamonix, France TUMPMP02

Electromagnetic Design and Optimization
Magnets

93



Table 1: Eddy-current losses per cycle, computed for a time step of 0.01 s and for two different discretizations

.

small model
(±30000 dofs)

large model
(±100000 dofs)

original standard yoke 25.9 J 22.7 J
coil yoke with SMP block 18.7 J 19.3 J

yoke with horizontal cuts 22.0 J 24.4 J
yoke with deep horizontal cuts 21.2 J 22.8 J

alternative standard yoke 7.67 J 8.03 J
coil yoke with SMP block 5.17 J 6.69 J

yoke with horizontal cuts 10.13 J 9.67 J
yoke with deep horizontal cuts 8.79 J 9.14 J
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Figure 6: Eddy-current loss distribution along the axis of
the magnet configurations with the original coil.

urations feature the original coil (”original coil”) whereas
the four other configurations are equipped with an alterna-
tive coil (”alternative coil”). Four yokes are considered: the
”standard yoke”, a yoke where a block of a sintered mag-
netic powder (SMP) material is inserted at the ends (”with
SMP block”), a yoke where horizontal cuts with a depth of
50 mm are applied at the vertical positions (”with horizon-
tal cuts”) and a yoke where horizontal cuts with a depth of
200 mm are applied at the same vertical positions (”with
deep horizontal cuts”). Qualitative improvements of the
different coil and yoke designs are clear from comparing
the rows in Table 1. The differences for both computational
grids (compare the columns in Table 1) indicate, however,
that one has to be careful with quantitive conclusions. Both
the SMP block and the horizontal cuts cause a reduction of
the eddy-current losses, albeit less than one would expect.
A modification to the coil has more effect. The spatial dis-
tribution of the eddy-current losses along the axis of the
magnet is shown in Fig. 6. The SMP block shifts the
eddy-current losses to the inside of the magnet. The hor-
izontal cuts restrict some eddy-current paths and therefore
also cause a reduction of the eddy-current losses. In the-
ory, optimal cuts are organized such that they are parallel to
the magnetic flux lines and orthogonal to the expected eddy
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Figure 7: Eddy-current power losses during the cycling for
the magnet configurations with the original coil.

currents. The time dependence of the eddy-current losses is
shown in Fig. 7. The power losses are similar for the three
yokes at the beginning of the cycling. First when saturation
appears, differences in the magnitude of the power losses
come up. The ferromagnetic saturation prevents large flux
densities and therefore indirectly also prevents large eddy-
current losses.

RESULTS FOR THE SIS-300 MAGNET

The cable magnetization model and the cable eddy-
current model are used in combination with a magneto-
quasistatic formulation discretized by the FIT in space and
discretized by the SDIRK-3(2) method in time. The mag-
netizations computed by both approaches are compared in
Fig. 8 for the case of cross-over eddy currents. The dif-
ference between Fig. 8a and Fig. 8b indicates that the ca-
ble magnetization model may be inaccurate and should
be depreciated in favor of the cable eddy-current model.
The double-layer structure of the coils is reflected in the
cross-over and adjacency eddy-current distributions occur-
ring in the Rutherford cable (Fig. 9). The cable eddy-
current model implements barriers between the coil wind-
ings. Based on this simulation tool, the additional losses
and the deterioration of the aperture field during the ramp-
ing of the superconductive magnets is computed.
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(a) (b)

Figure 8: Magnetic flux lines of the magnetization of the
cos φ-type dipole superconductive magnet due to cross-
over eddy currents in the coils: (a) simulated by the cable
magnetization model; (b) simulated by the cable eddy-
current model.

(a) (b)

Figure 9: Distribution of (a) the adjacency eddy current
density due to the time-varying azimuthal field and (b)
the cross-over eddy current density in the Rutherford ca-
ble.

CONCLUSIONS

The laminated structure of the magnet yoke and the in-
ner geometry of superconductive cable introduce geomet-
rical details in superconductive magnet models which can
not be resolved by the computational grid. It is possible to
incorporate eddy-current effects in the yoke and cable com-
posites when applying appropriate homogenization tech-
niques. Then, it becomes possible to compute the aperture-
field deterioration and the eddy-current losses due to the
ramping of the magnets.
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