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Abstract

The high spatial resolution needed in self-consistent

particle simulations can be achieved using adaptive mesh

refinement techniques (AMR). In this paper the code

SMOVE which is based on such an adaptive mesh is pre-

sented. It allows for accurate simulations with a high spa-

tial resolution in the vicinity of the particle bunches. Fur-

thermore, it offers the possibility of simulating long ac-

celerator structures of several meters length. The code is

tested and validated using the RF electron gun of the Photo

Injector Test Facility at DESY Zeuthen (PITZ) as an ex-

ample. The evolution of various beam parameters along

the gun is compared with the results obtained by different

beam dynamics codes.

INTRODUCTION

In many applications the self-consistent simulation of

charged particle beams is necessary. Well-known codes

like the MAFIA TS modules [1] use a fixed computational

grid which has to resolve the bunch adequately. Therefore,

they suffer from enormous memory consumption. A rem-

edy to this limitation is the application of adaptive mesh

refinement techniques. However, since their application in

Finite-Difference methods in time-domain is critical con-

cerning numerical instability, usually problem-matched but

static meshes are used.

The simulation of long accelerator structures, is a partic-

ularly difficult task due to diverse aspects. Regarding the

geometrical dimensions of the bunches in a photo injector

and the injector section itself the problem has an extreme

multi-scale character. Considering the PITZ injector [2]

as an example, the laser pulse has a longitudinally flat-top

time profile with a FWHM length of 20 ps; 2 ps rise and fall

time, respectively. The emitted bunches evolve to a length

of approximately 10 mm whereas the booster cavity, accel-

erating the particles to relativistic energies, is located at a

position of 2.4 m behind the cathode. Besides the small

mesh step size needed for resolving the extensions of such

short bunches, the requirements on spatial grid resolution

are further increased because of the high-frequency fields

being excited by the bunch. Since these fields experience

Lorentz-contraction in the direction of bunch motion their

spectrum is dominated by frequencies in the THz range.

Thus, resolving the complete structure with an adequate

mesh step size leads to an enormous number of mesh cells
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which cannot be handled with commonly available compu-

tational resources.

A possible approach for solving the problem is the ap-

plication of a time-adaptive mesh technique. Starting with

a rather coarse base grid, a local refinement is applied in a

small region containing the particles. The topology of the

grid is automatically adapted as the particles move within

the computational domain. A related idea has been pro-

posed in [3] for the calculation of wake potentials for short

bunches.

TIME-ADAPTIVE MESH REFINEMENT

Data structure

In order to provide efficient and flexible ways of manip-

ulating the computational grid, the refinement process is

organized in a hierarchical manner. Local refinement at a

given position is provided by bisectioning of existing, large

cells of the underlying grid. The data structures which de-

scribe this procedure adequately, are binary trees growing

from each cell of the base grid. The mesh step size ∆ in

such a refinement process decreases according to

∆ = ∆base/2N , (1)

with N being the level of refinement.

Each transition between regions of different mesh step

sizes causes numerical reflection since the numerical phase

velocity depends on the resolution. The complex reflection

coefficient r depends on the jump of the grid step size at the

transition boundary. For the transition of a homogeneous

plane wave from a region 1 to a region 2 the reflection co-

efficient is given by

r = −
∆1
∆2

(
e−iα2 − 1

)
+

(
e+iα1 − 1

)
+ φ

∆1
∆2

(e−iα2 − 1) + (e−iα1 − 1) + φ
with (2)

α1 = β1∆1, α2 = β2∆2, φ = ω2 ∆1

2 c2
(∆1 + ∆2). (3)

∆1 and ∆2 denote the step sizes in two regions and β1 and

β2 the corresponding numerical propagation constants [4].

Figure 1 shows the dependency of the reflection amplitude

on the refinement level N for various grid resolutions.

In order to minimize such numerical reflection effects

the difference in the refinement levels of every two neigh-

boring cells N1 and N2 is limited to one in the longitudinal

as well as in the transversal directions. In other words, only

grid transitions of aspect ratio 1:2 are allowed. The refine-

ment level, therefore, smoothly decreases from the most

TUPPP26 Proceedings of ICAP 2006, Chamonix, France

132 Numerical Methods in Field Computation
Solver Techniques



2 4 6 8 10
N

0

0.05

0.1

0.15

0.2

0.25

0.3
�r�

Figure 1: Reflection coefficient vs. refinement level. The

reflection coefficient strongly increases for small changes

in the step size. (Grid points per wave length λ: ——♦ ∼
5, ——� ∼ 10, ——� ∼ 15, ——� ∼ 20)

Figure 2: Snapshots of the adaptively refined computa-

tional grid. The upper half corresponds to the mesh during

emission. The lower half depicts the dynamically refined

mesh at a later time instant.

refined region to the coarse parts of the grid. While the

particles move within the computational domain the under-

lying data structure is automatically updated by expanding

or shrinking the binary trees representing the mesh refine-

ment. In figure 2 the adaptive mesh refinement procedure

is illustrated. The maximum level of grid refinement in the

longitudinal as well as the transversal directions is equal to

N = 4 which corresponds to a refinement by a factor of

24 = 16 of the base grid.

Field Interpolation Scheme

The solution of Maxwell’s equations for the discretiza-

tions shown in figure 2 is obtained by applying the Finite
Integration Technique (FIT) [5, 6]. However, in order to ap-

ply the method, field components have to be interpolated to

their new position after each adaptation of the grid. Since

interpolations within explicit time domain methods are crit-

ical concerning accuracy and stability, several interpolation

techniques have been tested.

Linear interpolation is easy to implement and fast in

execution. However, a linear interpolation of the high-

frequency fields in the vicinity of the bunch is not very ac-
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Figure 3: Comparison of a C-Spline and an Akima-Spline

interpolation. The Akima-Spline shows less overshooting.

As an effect of the slope limiting it is smoothed out to a

constant at both ends of the curve.

curate. Therefore, the usage of higher order interpolating

functions such as splines was investigated.

Since many splines show significant overshooting and

oscillatory behavior a class of modified subsplines is uti-

lized. The coefficients of the Akima-subsplines can be cal-

culated explicitly without solving a system of equations.

Additionally, the slope-limiting technique [7] can be ap-

plied. Using this technique the spline is modified in such

a way that alternating gradients in neighboring supporting

intervals are flattened. This effect can be seen best at both

ends of the Akima-spline in figure 3. More details on this

topic are given in [8].

Dispersion properties

For long range particle simulations, low dispersion and

a low level of related numerical noise have to be attained in

order to achieve accurate results. This can be realized by

using a high spatial resolution. Along with the spatial reso-

lution the numerical phase velocity increases, approaching

the physical speed of light. The code SMOVE [9] works

on the basis of the time-adaptive mesh algorithm described

above. Below, its dispersion properties are investigated for

different refinement levels.

First, the numerical phase velocity of a sinusoidal wave

was determined. The excitation of the wave takes place on

one boundary of the computational domain. As the wave

propagates, the region of the refined grid is adaptively en-

larged in order to cover the area in between the exciting

boundary and the front of the traveling wave. In figure 4

(top) the results are given together with a fitted curve and

the physical phase velocity normalized by the speed of light

in vacuum c0. Level zero corresponds to the non-refined

base grid, resolving one wavelength by five grid points

(∆0 = λ/5). Hence, a refinement level of seven corre-

sponds to a resolution of ∆7 = ∆0/(27) = λ/640.

The reduction of noise was investigated using a travel-

ing wave of Gaussian shape. Starting from a resolution of

eight points, the refinement level was increased until only
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Figure 4: The numerical phase velocity increases with the

refinement level and approaches the speed of light in vac-

uum (top). Gaussian wave for the refinement levels 0, 1,

3 and 5. In the legend, the memory needs for the time-

adaptive mesh approach and a static grid of equal resolu-

tion (in brackets) are given (bottom).

spurious noise was observed after a distance of five me-

ters. Figure 4 (bottom) shows the result for different refine-

ment levels. The most remarkable property is the memory

consumption. In order to achieve an accurate transmission

using the time-adaptive mesh approach, memory require-

ments are increased by a factor of ≈ 2.13 compared to the

base grid. For a static grid of the same resolution, however,

this factor is 32.

Material discretization

For accurate self-consistent simulations including all ef-

fects, the geometry of accelerator components also has to

be taken into account. This is realized by assigning mate-

rial properties to the cells of the computational mesh ac-

cording to the physical model. Since the accuracy of the

shape representation has a strong influence on the accuracy

of the results, it should be as precise as possible, especially

in the vicinity of the bunch. Therefore, within the code

SMOVE, the resolution of the material discretization in-

creases in conjunction with the refinement of the grid.

The geometry is represented using a triangulation of the

surfaces. This allows for a precise description independent

of the size of the computational cells. In the current imple-

mentation, a cell is filled with the material of the compo-

nent its center point is located in which results in a staircase

approximation of the material distribution. This procedure

is independent of the geometrical dimensions of the com-

putational cells.

Figure 5: Surface triangulation of a piece of beam tube and

2.5 TESLA-like cavities.

Figure 6: Computational meshes and material discretiza-

tions on the basis of the above surface triangulation. Along

with the adaptive mesh refinement, the material discretiza-

tion becomes more accurate. The mesh cells in grey are

filled completely with perfectly conducting material.

In figure 5 a surface triangulation of TESLA-like cavities

is shown. This triangulation is the basis for the material

discretizations shown in figure 6. The meshes have been

built for demonstration purposes only. The resolution is,

therefore, very coarse. In the upper part of figure 6 the

material distribution in the base grid is shown. In the lower

part, a region of the mesh was refined. Despite the rather

coarse resolution, the representation of the structure in this

region is more accurate.

EXAMPLES

The code is tested and validated using the PITZ gun as

an example. In figure 7 the evolution of the transversal

RMS beam size in tracking and in self-consistent mode are

given. For comparison the results obtained with the code

ASTRA [10] are shown in the same diagram. In [8] first

results for the transverse beam size in self-consistent mode

were given. Recently, a more accurate scheme [11] for the

particle-to-grid interpolation has been implemented. The

results are in good agreement with those given in [12] us-

ing a Discontinuous Galerkin Finite Element (DG-FEM)

approach in time domain as well as those obtained using

ASTRA. However, in contrast to the DG-FEM code and

SMOVE, ASTRA does not take the geometry of the en-

closing accelerator into account.

The RMS beam size in the longitudinal direction (fig. 8
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Figure 7: Transverse RMS beam size calculated in tracking

mode (top) and in self-consistent mode (bottom).

top) however, shows differences for all codes. In [13] it

was stated that longitudinal resolutions down to 20 µm are

necessary in the vicinity of the cathode to cover all aspects

of the particle motion in that low-energetic regime. Indeed,

variations of the longitudinal mesh step size do have an im-

pact on the computed bunch length. For the evolution of the

transverse beam emittance the codes also yield slightly dif-

ferent results whereas the results of SMOVE and DG-FEM

coincide. Further investigations have to be done before a fi-

nal statement on the accuracy of these results can be made.

CONCLUSIONS
A new approach to self-consistent simulations of

charged particles including geometry effects was pre-

sented. It is based on a time-adaptive mesh which is auto-

matically refined in the vicinity of particles. Due to the con-

siderable reduction of memory demands it is well-suited for

the application to long accelerator structures. Results ob-

tained utilizing the code SMOVE, based on this method,

were presented and show good agreement to those attained

using other codes. In order to achieve an even higher reso-

lution in dedicated regions, like the vicinity of the cathode,

an additional static mesh refinement is a work in process.
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