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Abstract

Split operator schemes have been recently applied for re-
ducing the numerical dispersion in 3D beam dynamic sim-
ulations [1]. Another application of split-operator schemes
is the unconditionally stable integration of Maxwell’s equa-
tions in time [2]. However, in comparison to the standard
Yee scheme these methods do not fulfill a semi-discrete
Gauss law. Theoretically, this circumstances may result in
an unbounded growth of the error in semi-discrete Gauss’s
law in the numerical integration. In this paper it is shown
that this is not the case. The existence of modified fully dis-
crete divergence operators for the investigated schemes is
shown which guarantee the conservation of a fully discrete
charge.

INTRODUCTION

An important aspect of self-consistent particle simula-
tions in the time-domain is the conservation of charge dur-
ing the simulation. From the Maxwell equations,

curl �E = −∂t
�B, curl �H = ∂t

�D + �J (1)

div �B = 0, div �D = � (2)

it follows that the sources and currents satisfy the continu-
ity equation,

∂t� + div �J = 0. (3)

This is in general not true for discrete approximations
where typically only the first pairs of Maxwell’s equa-
tions (1) are discretized and solved. The reason for the lack
of electric charge conservation in the fully discrete formu-
lations can be categorized as follows:

• First, the semi-discrete approximation of (1) (i.e., dis-
cretized space and continuous time) has no appropri-
ate semi-discrete divergence operator, divh , consis-
tent with (2). One possible reason for this is that, for
the semi-discrete curl operator, curlh , the identity,
divh curlh = 0, does not hold.

• Second, the semi-discrete method has an appropriate
discrete divergence operator divh, however, the ap-
plied time-marching scheme does not conserve a fully
discrete charge in any sense.

• Third, for a fully discrete approximation of (1) an ap-
propriate fully discrete divergence operator divht ex-
ists, however, the fully discrete charge and current dis-
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tributions do not fulfill the fully discrete continuity
equation.

The paper is organized as follows. First, the semi-
discrete Finite Integration Technique (FIT) is presented
which preserves an appropriate semi-discrete divergence
operator. Then, the time-integration of the FIT with split-
operator schemes is described. In the following section,
appropriate fully discrete divergence operators for the split-
operator schemes are constructed. Using these operators,
fully discrete continuity equations are derived and conser-
vative fully discrete charge and current interpolation algo-
rithms are constructed. In the last section, two test exam-
ples are presented showing the validity of the approach.

FINITE INTEGRATION TECHNIQUE

In this work the investigation is restricted to the FIT [3],
however, the same techniques are applicable to other dis-
cretization methods. The topological building blocks of the
FIT are the discrete operators

S :=
(
Px,Py,Pz

)
, S̃ := −

(
PT

x ,PT
y ,PT

z

)
,

(4)
[C]ik := εijkPj , C̃ := CT .

Defining the vectors, �e := (�ex, �ey, �ez), of electrical volt-
ages and,

�

h := (
�

hx,
�

hy,
�

hz), of magnetic voltages the vec-
tors

�
�

d of electric fluxes and
�
�

b of magnetic fluxes are ob-
tained by the discrete material laws

�
�

d := Mε
�e,

�
�

b := Mµ
�

h. (5)

The resulting Maxwell-Grid-Equations (MGE) separate
into the dynamic laws

C�e = − d
dt

�
�

b, C̃
�

h =
d
dt

�
�

d +
�
�

j (6)

and the static laws

S
�
�

b = 0, S̃
�
�

d = q. (7)

The ordinary differential equations (6) are the starting point
for the fully discrete methods considered in this work.
Equation (6) exactly conserves the semi-discrete charge
with respect to the divergence operator,

divh := S̃, (8)

which is consistent with the definition of the discrete Gauss
law in (7). Hence, only the time integration scheme or
charge and current interpolation on the grid may introduce
an unbounded growth of the error in Gauss’s law.

TUPPP29 Proceedings of ICAP 2006, Chamonix, France

140 Numerical Methods in Field Computation
Solver Techniques



SPLIT-OPERATOR SCHEMES

VERLET-LEAPFROG SCHEME

A standard time-marching scheme for (6), with time step
∆t, is the Verlet-Leap-Frog (VLF) method

�

h
(∗)

=
�

h
(n) − ∆t

2
M−1

µ C�e(n),

�e(n+1) = �e(n) + ∆tM−1
ε C̃

�

h
(∗)

, (9)

�

h
(n+1)

=
�

h
(∗) − ∆t

2
M−1

µ C�e(∗).

Defining the vectors

y :=
(

�

h, �e
)T

, b :=
(
0,−∆tM−1

ε

�
�

j
)T

(10)

it is possible to rewrite the update equations (9), now in-
cluding the current source by a Godunov splitting, in the
more compact form

y(n+1) = GLF (∆t)y(n) + b(n+1/2) (11)

with the propagation matrix GLF (∆t).
The VLF scheme preserves the semi-discrete charge de-

fined by the semi-discrete Gauss law (7) if the charge and
current are interpolated to the grid such that,

q(n+1) − q(n) + ∆tdivh

�
�

j
(n+1/2)

= 0 (12)

holds. Consistent charge and current interpolation for (12)
are well know in the literature [4] and are in the rest of the
paper referred to as standard current and standard shape
schemes.

LONGITUDINAL-TRANSVERSAL LEAP-FROG
SCHEME

We note that the VLF scheme has a larger maximal sta-
ble time step in one- and two-dimensions than in three-
dimensions. This motivates a split-operator approach along
the spatial directions to achieve stability and a better nu-
merical dispersion along the z-axis. Defining the longitu-
dinal and transversal curl operators by

CL :=

⎛
⎝ 0 −Pz 0

Pz 0 0
0 0 0

⎞
⎠ , CT := C − CL (13)

the second order accurate longitudinal-transversal VLF
(LT-VLF) scheme reads

y(n+1) = GLF
T

(
∆t

2

)
GLF

L (∆t)GLF
T

(
∆t

2

)
y(n).

(14)

In (14) the propagation matrices GLF
T (∆t) and GLF

L (∆t)
indicate that the VLF method (9) is applied with the partial
curl operators CL and CT instead of the full curl operator
C, respectively. In [1] it is shown that the LT-VLF scheme

is stable for an equidistant grid up to a Courant number
equal to one and that it has no numerical dispersion along
the z-axis at its stability limit. The current term is simply
added to (14).

However, the LT-VLF scheme applies only the partial
curl operators and, therefore, does not conserve the semi-
discrete charge in the sense of (7).

ADI SCHEME

The ADI scheme [2] is an unconditionally stable time
marching scheme which splits the curl operator into the
two parts

C+ :=

⎛
⎝ 0 0 Py

Pz 0 0
0 Px 0

⎞
⎠ , C− := C − C+. (15)

Using these operators the time marching scheme is formu-
lated as

�

h
(∗) − �

h
(n)

∆t/2
= −M−1

µ

(
C+

�e(n) + C−

�e(∗)
)

,

�e(∗) − �e(n)

∆t/2
= M−1

ε

(
C̃+

�

h
(n)

+ C̃−

�

h
(∗)

)
,

(16)�

h
(n+1) − �

h
(∗)

∆t/2
= −M−1

µ

(
C+

�e(n+1) + C−

�e(∗)
)

,

�e(n+1) − �e(∗)

∆t/2
= M−1

ε

(
C̃+

�

h
(n+1)

+ C̃−

�

h
(∗)

)
.

Scheme (16) separates naturally into two stages, each being
implicit in time. In analogy to the VLF method the prop-
agation matrix, GADI (∆t), for the ADI method is defined
by (16). Even though the method is implicit, the result-
ing linear equations can be solved with the sweep method
and thus the asymptotic complexity of the method is the
same as that of an explicit method. However, also the
ADI method (16) does not conserve the charge in the sense
of (7).

CONSTRUCTION OF DISCRETE
DIVERGENCE OPERATORS

For the construction of an appropriate fully discrete di-
vergence operator the following, general update equation
(omitting the explicit dependence on ∆t)

y(n+1) = Gy(n) (17)

is considered. Every linear operator L which defines a
scalar grid function ϕ by ϕ := Ly, which is conserved
under the time evolution of (17) has to fulfill the condition

LG = L, [L]ij := [vj ]i (18)

which means that L is a matrix of left eigenvectors vj with
eigenvalue one of the propagation matrix G.
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In general, it is not possible to construct L analytically.
However, if boundary conditions are neglected, homoge-
neous material distributions and grids are assumed, the
problem becomes amenable to an analytical treatment. The
reason for this is that under these conditions all operators
involved in the definition of G commute. Therefore, it is
possible to treat the operators like numbers and hence to
find the solutions of (18) with the help of a computer al-
gebra package. In the following, σ := c∆t/∆ denotes the
Courant number, where ∆ is the mesh spacing of a equidis-
tant grid. The appropriate fully discrete divergence opera-
tor of the LT-VLF method is given by

divLT
ht :=

(
S̃xΛ, S̃yΛ, S̃z

)
, Λ := 1 +

σ2

4
PzP

T
z (19)

and that of the ADI method by

divADI
ht :=

(
S̃xΛx, S̃yΛy, S̃zΛz

)
, (20)

Λx := 1 − σ2

4
PzP

T
z , Λy := 1 − σ2

4
PxP

T
x ,

Λz := 1 − σ2

4
PyP

T
y .

A comparison with (8) shows that (19) and (20) are con-
sistent, second order accurate fully discrete divergence op-
erators in space and time. Using these operators, the fully
discrete Gauss laws defined by

divLT
ht

�
�

d = qht, divADI
ht

�
�

d = qht (21)

are conserved for the LT-VLF and ADI scheme, respec-
tively.

SOLUTION OF THE DISCRETE
CONTINUITY EQUATION

Applying divLT
ht on the update equations (14) and (16),

respectively, results in the fully discrete continuity equa-
tions

q(n+1) − q(n) + ∆tdivLT/ADI
ht

�
�

j
(n+1/2)

= 0. (22)

In order to derive charge and current interpolations which
satisfiy (22) a general technique is proposed which maps
every solution of (12) into a solution of (22). This approach
has the advantage that well known interpolation methods
from the literature for (12) can be applied.

To construct the mapping for the LT-VLF method the
operator Λ is applied to (12) and the coefficients are com-
pared with (22) which yield that

qht = Λq,
�
�

j ht =
(

�
�

j x,
�
�

j y,Λ
�
�

j z

)
(23)

is a solution of (22).
For the ADI method the VLF continuity equation (12) is

rewritten as

q(n+1) − q(n) + ∆t
(
SxΛxΛ

−1
x

�
�

j x + SyΛyΛ
−1
y

�
�

j y

+SzΛzΛ
−1
z

�
�

j z

)(n+1/2)

= 0.
(24)

Comparing (24) with the new continuity equation (22) the
modified charge and current vectors are obtained as,

qht = q,
�
�

j ht =
(
Λ−1

x

�
�

j x,Λ−1
y

�
�

j y,Λ−1
z

�
�

j z

)
. (25)

The operators Λ−1
x ,Λ−1

y and Λ−1
z can be efficiently calcu-

lated by the sweep method.

NUMERICAL VALIDATION

SINGLE PARTICLE

In the first validation example a single macro particle is
injected into a cubic cavity of 10cm edge length with per-
fect electric conducting walls. The macro particle starts
at the origin, has an initial velocity of β = 0.3 and is
moving in diagonal direction, i.e., �v = 0.3/

√
3(1, 1, 1).

Figure 1 and fig. 3 show the charge densities calculated
with the semi-discrete Gauss law (2) for the LT-VLF and
ADI method, respectively. As reference, the charge density
obtained directly from the particle distribution is shown.
When the current is calculated with a standard interpola-
tion scheme large, spatially fluctuating residual charges are
left behind the particle on the computational grid. In con-
trast, the conservative current interpolations (23) and (25)
do not show this behavior. For the LT-VLF method this
observation is explained in fig. 2 which shows the charge
density calculated from the particle position with the shape
function defined in (23) and shows that it coincides with
the charge density calculated with the fully discrete Gauss
law (21). As reference, the charge density obtained from
the standard shape function is shown. For the ADI scheme
fig. 4 shows that the charge density calculated with the new
Gauss law (21) coincides with that obtained directly by the
particles with the standard shape function.
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/
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div Standard Current
div New Currenth

h

Figure 1: For the LT-VLF scheme the charge distribution
obtained by the semi-discrete Gauss law (2) for the stan-
dard and newly proposed current scheme is shown. As ref-
erence, the charge distribution obtained directly from the
particles is shown.
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Figure 2: For the LT-VLF scheme the charge distribution
obtained from the fully discrete Gauss law (21) is shown.
The charge distribution obtained from the fields coincides
with that obtained from the particles with the new shape.
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Figure 3: For the ADI scheme the charge distribution ob-
tained by the semi-discrete Gauss law (2) for the standard
and newly proposed current scheme is shown . As ref-
erence, the charge distribution obtained directly from the
particles is shown.

CONVERGING BEAM

In this section a converging electron beam of radius
R = 2cm, current I = 1A, with an initial velocity of
vz = 0.8c and a transversal linear varying focusing ve-
locity distribution is considered. The space charge effect
in this example is negligible, however, the accumulation of
divergence errors in the Gauss law shifts the focal point of
the beam. This is demonstrated in fig. 5 where the ADI
method is applied with the proposed conservative current
calculation (25) and as comparison with a standard cur-
rent interpolation. The results are compared after approx-
imately twenty beam transitions. An identical simulation
results holds true for the LT-VLF method and is therefore
not presented.
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Figure 4: For the ADI scheme the charge distribution ob-
tained from the fully discrete Gauss law (21) is shown and
compared to that calculated directly from the particles.
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Figure 5: Phase space distribution of the converging elec-
tron beam. In gray the simulation for the ADI scheme with
the new proposed current scheme and in black the simula-
tion with the standard current scheme is shown. Near the
focal point large spurious deviation in phase space are ob-
served.

CONCLUSION

The existence and form of fully discrete Gauss laws ap-
propriate for the LT-VLF and the ADI method have been
presented. Additionally, conservative current interpola-
tions for both methods were developed. In two test ex-
amples the validity of both approaches have been demon-
strated.
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