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Abstract

Simulation studies of the transverse stability of the FAIR
synchrotrons have been started. The simulation code
PATRIC has been developed in order to predict coher-
ent instability thresholds with space charge and different
impedance sources. Some examples of code validation us-
ing the numerical Schottky noise and analytical stability
boundaries will be discussed.

INTRODUCTION

The FAIR synchrotrons will be operated with medium
energy, intense heavy ion beams of low momentum spread.
The range of bunch lengths and bunch profiles during a typ-
ical cycle covers dc beams, long dc-like bunches in bar-
rier buckets, long bunches in single and in dual rf waves
[1]. Before extraction the bunches are converted into a sin-
gle, short (50 ns) bunch. The required accumulation times
are of the order of 1 s. Because of the high intensities to-
gether with low momentum spreads transverse instabilities
driven e.g. by resistive wall or kickers impedances [2] are
of concern. In addition the bunches will experience large
transverse space charge tune shifts, compared e.g. to the
effective tune spread for Landau damping. Space charge
itself will not drive coherent instabilities, but is can greatly
modify the stability boundaries (see e.g. [3]). Simulation
codes used in the FAIR studies have to accurately resolve
impedance and space charge effects over long time scales.
For the determination of stability boundaries it is also im-
portant to account for realistic rf wave forms and bunch
profiles. In this contribution the implementation of space
charge and transverse impedances in the simulation tool
PATRIC, developed at GSI, will be described. Some ex-
amples of code validation and application to relevant beam
physics issues will also be discussed. Other codes with
similar capabilities are ORBIT [4] and HEADTAIL [5, 6].
However, in PATRIC several options are implemented that
will be specifically important for the FAIR related studies

• A self-consistent, parallel numerical space charge
model that is well adapted to long bunches or alter-
natively ’frozen’ space charge fields in order to per-
form studies over long time scales with low simulation
noise.

• Arbitrary rf wave forms and corresponding matched
longitudinal distributions

• Coupling to a (broadband) transverse impedance spec-
trum.
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• Additional effects that are important over long time
scales, like kinetic IBS.

• Modular implementation using C++ classes. Steering
scripts written in Python to perform parameter scans
and determine and display stability boundaries.

In the following some of the underlying beam physics mod-
els and their numerical implementation in PATRIC will be
described.

SPACE CHARGE KICKS IN PATRIC

The particles position relative to the ideal orbit in the
transverse plane are (x, x′, y, y′). In the longitudinal plane
we use (z, δ) with z = s−s0 (s0 position of the bunch cen-
ter in the lattice) and the relative momentum deviation δ.
The lattice is divided into short segments Δs. The particles
are advanced through the segments using (linear) matrices
and (nonlinear) kicks. In the horizontal plane we solve

(
xs+Δs

x′
s+Δs

)
= M(Δs)

(
xs

x′
s + Δx′

sc + Δx′
imp

)
(1)

M(Δs) are MAD-X sectormap [7] objects obtained from
a MAD-X output file. The length Δs of a sectormap is
determined by the variation of the beam envelope and the
required space charge kicks per betatron wave length. The
horizontal space charge kicks are calculated every Δs from

Δx′
sc(x, y, z) =

qEx(x, y, z)Δs

mv2
0γ3

0

(2)

with the relativistic parameter γ0, the velocity of the center
particle v0, mass m, charge q and the transverse electric
field Ex obtained from the 2D Poisson equation

∂Ex(zl)
∂x

+
∂Ey(zl)

∂y
=

ρ(x, y, zl)
ε0

(3)

with the beam density ρ interpolated on a longitudinal grid
defined between the bunch ends (see Fig. 1) with Nb grid
points, grid spacing Δl � lb (bunch length lb) and grid
point positions zl. At every zl a fast 2D Poisson solver is
used to obtain Ex(x, y, zl). This approach is often called
’2.5D space charge’ or ’sliced space charge calculation’,
with the slice position zl and slice length Δl. It is assumed
that the bunch is long relative to the transverse beam and
pipe dimensions. Another important simplification is that
we assume the same position s0 in the lattice for all bunch
slices, not just for the the center slice. Therefore the fast
variation of the transverse bunch envelope in alternating
gradient focusing lattices is neglected in the space charge
calculation.
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Figure 1: Sketch of the different longitudinal grids used in PATRIC for tracking, space charge, impedance kicks and
parallelization.

For the parallelization of the tracking step and the space
charge calculation the bunch is divided into Nm ≤ Nb

macro-slices, with slice center positions Zm and slice
length ΔZ ≥ Δl. For efficient load-balancing the macro-
slice length is adjusted automatically to the bunch pro-
file during a simulation run. Particles migrate slowly
between macro-slices due to synchrotron motion. After
each tracking step the particles are exchanged between
neighboring macro-slices using MPI [8] routines. Each
macro-slice keeps ΔZ/Δl 2D transverse grids and per-
forms ΔZ/Δl serial 2D Poisson solver calls and bilinear
grid-particle/particle-grid interpolations. The calculation
of the transverse space charge field is greatly simplified if
we use the approximation of rigid dipole oscillations. If we
take the example of a parabolic beam profile the resulting
electric space charge field is given through

Ex(x, y, z) ≈ I(z)(x − x̄)
2πε0v0a2

(
2 − 1

a2
((x − x̄)2 + y2)

)

(4)
with the local current I(z) and the beam radius a. In this
case the transverse grids are not needed. However, care-
ful comparisons of stability boundaries obtained with self-
consistent space charge are required before the ’frozen’
space charge calculation can be used in the required 3D
studies for the FAIR rings.

IMPEDANCE KICKS

The ’dipole moment times current’ at a fixed ring posi-
tion s is ψ(t).The resulting horizontal kick per turn (see
e.g. [9]) is

Δx′
imp =

∫
F⊥ds

β2
0E0

= (5)

Re

⎛
⎝ iq

β0E0

∑
j

ψjZ⊥(Ωj) exp(iΩjt)

⎞
⎠

with the frequency spectrum ψ(Ωj) at the coherent dipole
oscillation frequencies (bare machine tune Q)

Ωj = (n ± Q)ω0 (6)

The horizontal dipole moment along the longitudinal parti-
cle position z is defined as

ψ(z, t) = β0c

∫
xρ(x, y, z, t)dxdy (7)

and the Fourier spectrum is ( ring circumference L)

ψn(t) = exp(∓iQω0t)
∫ L

0

ψ(z, t) exp(−inz/R)dz (8)

The amplitude ψn(t) varies slowly with time. For lumped
impedances the resulting kick is applied every Δs

Δx′
imp(z, t) =

Δs

L

q

β0E0
× (9)

Re

(
i exp(±iQω0t)

∑
n

ψn(t)Z⊥[(n ± Q)ω0] exp(inz/R)

)

For a localized impedance source we set Δs = L and the
kick is applied every turn.

The numerical implementation of impedance kicks in
PATRIC employs a grid along the z-axis with periodic
boundary conditions at z = 0 and L. Let zj = jΔz be
the grid points along the z-direction. For the transverse
kick due to a localized impedance source we set Δs = L.
The time between the kicks is then Δt = T and tk = kT .
ψ(zj , tk) is the dipole moment at the position zl and turn
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k. The horizontal kick is applied to all particles every turn
using a Fast Fourier Transformation (FFT)

Δx′(zj , tk) =
q

β0E0
Re

(
FFT−1[iψn(tk)Z⊥((n ± Q)ω0)]

)
(10)

with the dipole amplitudes

ψn(tk) = FFT[ψ(zj , tk)] (11)

VALIDATION AND APPLICATION
EXAMPLES

PATRIC is presently being validated against the avail-
able analytic examples. Here we discuss some of the more
’non-standard’ examples of 3D code validation using coast-
ing beams. In the examples a simplified accelerator model
with constant focusing and reduced ring circumference is
chosen. Finally transverse stability studies in bunched
beams are briefly discussed.

Noise spectrum and stability boundary

Transverse stability boundaries in long bunches depend
critically on the longitudinal momentum spread and the as-
sociated Landau damping of coherent dipole modes. In
a coasting, stable beam the transverse ’Schottky’ noise is
one option to validate whether a 3D simulation code, like
PATRIC, can correctly resolve this coupling effect. Be-
cause of the ’granularity’ of the computer beam, which
is much coarser than in a real beam, the noise spectrum
contains a wealth of information on incoherent and coher-
ent effects, but also on artificial effects. Here we focus on
the noise frequency spectrum of offset oscillations obtained
from the Fourier transformation of the dipole current ψ(t).
In the simulation example chromaticity is set to zero and
the rms horizontal tune spread is

Sx =| η(n ± Qx)ω0δrms | (12)

with the slip factor η, the bare tune Qx and the rms momen-
tum spread δrms. The impedance spectrum used in the ex-
ample has a large negative imaginary contribution ZI (e.g.
due to wall image currents). The resulting coherent tune
shift and the space charge induced incoherent tune shift are
adjusted to the same value (−0.01 in the example). Under
these conditions Landau damping is maximized. A broad-
band oscillator is added to the impedance spectrum

Z⊥,r =
ω

ωr

ZR

1 − iQ (ω/ωr − ωr/ω)
(13)

with the resonance frequency ωr tuned to harmonic n = 10
of the simulation model. The value of ZR is chosen well
below the instability threshold obtained from the analytic
dispersion relation for a Gaussian momentum distribution.
The resulting noise power spectrum | ψ̂(ω) | is shown in
Fig.2. For harmonics close to n = 10 one can clearly
observe the relative enhancement of the ’slow’ (n − Qx)
lines relative to the ’fast’ (n + Qx) lines. In the examples

Figure 2: Noise power spectrum from the simulation.

Figure 3: Comparison of the noise power spectrum for the
slow mode close to (11−Q) (red dotted line) with a shifted
Gaussian (blue dashed curve).

the circumference is 54 m or one quarter of SIS 18. The
bare tune for this reduced circumference is is Qx = 0.81.
Details of the ’slow’ line at (11 − Qx) are shown in Fig.
3. The location of (11 − Qx) is indicated by the vertical
red dotted line. The blue dashed curve is a Gaussian with
rms width Sx with the frequency shift induced exactly by
the imaginary impedance component. This ’Schottky test’
covers the incoherent (width of the line) and the coherent
(shift of the line) beam properties relevant in beam stabil-
ity studies. In Fig. 3 on can also observe that deviations
from a Gaussian start at ≈ 2Sx. In the present example
we used only 5 · 105 macro-particles. Using more parti-
cles will improve the resolution of the tails of the Gaus-
sian. The simulation results shown were obtained with a
frozen, linear space charge model. The comparison with
the self-consistent space charge model and a homogenous
transverse beam profile (K-V distribution) showed no sig-
nificant difference in the noise power spectrum. As a sec-
ond validation example the analytic stability boundary for
a Gaussian momentum distribution [10] is checked. In the
example we fix the space charge tune shift and vary the
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Figure 4: Final (simulation time T ) dipole current ampli-
tude ψ(t = T )/ψ(t = 0) from a simulation scan. The red
dashed curve is the analytic stability boundary for a Gaus-
sian momentum distribution.

imaginary impedance ZI and the resonator impedance ZR.
Fig. 4 shows the stability boundary in the (ZR, ZI) plane
obtained from such a parameter scan. Here the result of
100 simulation runs with different (ZR, ZI) values is auto-
matically analyzed and displayed using Python scripts. The
color code represents the obtained maximum of the dipole
current. The stable area (no growth) is indicated in blue.
One can see that there is a rather good agreement around
the center of the stable area. These validation studies are
still ongoing. The parameter scan shown in Fig. 4 has been
obtained using self-consistent space charge kicks and a ini-
tial K-V distribution, leading to a linear space charge field.

Stability boundary in bunched beams

Besides the code validation activities 2D and 3D simu-
lation studies with PATRIC focus on two important beam
physics issues. Firstly the relevance of self-consistent
space charge for transverse stability boundaries is being
studied (see also Ref. [11]). With frozen space the sim-
ulation runs are faster and effects of numerical noise are
minimized. The question is whether with frozen space
charge one misses important instability damping or desta-
bilization mechanisms. Secondly the transverse stability
boundary in long bunches (long relatively to the resonant
wavelength of the broadband oscillator) is being compared
to the boundary for the corresponding coasting beam. In
bunched beams the variation of the coherent and incoher-
ent tune shifts along the bunch [12] as well the velocity
of the unstable waves on a beam with finite extension are
expected to increase the stability boundary. Fig. 5 shows
a snapshot obtained from the simulation of the instability
evolution in a beam confined between two rf barrier waves.
The simulation parameters are the same as those used in
the coasting beam studies in the the previous section. As

Figure 5: Evolution of a transverse instability in a beam
that is confined between two rf barrier waves.

a preliminary result we found that the stability boundary
in long barrier buckets is only slightly enlarged compared
to the equivalent coasting beam. However, extensive sim-
ulation studies using different beam parameters and also
conventional rf buckets still have to be performed.

CONCLUSIONS

The simulation tool PATRIC has been developed at GSI
in order to study coherent instabilities in the presence of
space charge in the FAIR synchrotrons. The recently im-
plemented 2.5D space charge and transverse impedance
kicks are still being validated against various analytic ex-
amples. Preliminary results indicate that for the required
3D stability studies, at least for first estimates, a ’frozen’
space charge model can be employed. Benchmarking with
the HEADTAIL code [5] using FAIR and CERN PS/SPS
parameters as well as experimental observation will be one
of the important next steps.
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