
THE FPP DOCUMENTATION ∗

E. Forest, Y. Nogiwa, KEK, Tsukuba, Japan,
F. Schmidt, CERN, Geneva, Switzerland

Abstract

In this short article we summarize the Web documenta-
tion surrounding the FPP package.

FULL POLYMORPHIC PACKAGE: FPP

FPP overloads in Fortran90 [1] an old version of the fa-
mous “DA-package” [2] of Berz as well as a library of For-
est called Lielib1 which is based on Berz’s package.

Real-Taylor Polymorphism

FPP most salient feature is to create a Taylor-Real poly-
morphic type which changes shape at execution time. To
do so using Berz’s original package, we use a piece of
code based on a Fortran77 prototype of J. Bengtsson. In
fact, polymorphism at execution time is an idea of Bengts-
son. This is to be contrasted with interpreted polymor-
phism which is the mechanism which underpins the code
COSY-INFINITY [4] of Berz. Both are valid ideas and can
even be combined, though not done in FPP.

In a standard mode, the user of FPP writes an (sym-
plectic) integrator [5, 6, 7] which simply pushes particles
through a lattice. If the real variables “real(8)” are replaced
everywhere by a new type called REAL 8 then Taylor se-
ries can be produced thanks to the underlying package of
Berz. The decision to produce a Taylor map can de done at
execution time rather than at compile time.

Manipulation and Analysis of Taylor Maps

The other aspect of FPP which is essential in linac and
ring physics is the overloading of the library Lielib. At the
SSC-CDG, Berz and Forest started a collaboration whose
central purpose was the creation of Lielib. Berz had already
a prototype of his “DA” package [8] which he brought to
SSC-CDG where it was further developed. A later version
of this package is overloaded and is at the root of the type
REAL 8 of FPP. However, it was clear to Forest that the
sole production of Taylor maps in a circular ring is of lim-
ited value. Thus we needed tools to normalize the one-turn
map and track it. This was done in the library Lielib which
calls routines from the “DA package” to achieve this goal.
FPP overloads both packages in Fortran90.

THE FIRST WEB PAGE

The documentation sits at the URL:
http://mad.web.cern.ch/mad/PTC proper/. While it

∗Work supported by KEK and Kasokukishoureikai.
1The initial theory was described in reference [3]

does contain a link to the tracking library PTC [9], every-
thing on that page is FPP proper. The first four FPP links
are:

1. What is the Full Polymorphic Package? (Check out
this toy overloaded DA-Package, it shows you on a
simple example how things work: click here)

2. Initializing FPP : for pure TPSA calculations and
for phase space calculations involving type DAMAP.
(with examples)

3. Fundamental Types: Taylor, Real Polymorph, Com-
plex Taylor and Complex Polymorph: Including the
Knob State of Polymorphs

4. Functions acting on the four fundamental types: Ex-
ponential, Logarithm, trigonometric and more...

In item # 1 we repeat more or less the introduction of
this paper. We also point to a fully functional “toy” DA
package. This has been useful as a pedagogical tool for
those who might wonder what the plain “DA” package of
Berz does and what it does not.

Item # 2 refers to the two ways FPP (or old Lielib) can
be initialized. One can simply ignore accelerator physics
and initialize the package as a plain Taylor polymorphic
package. Alternatively one can reserve the first 2, 4 or 6
variables of the Taylor series to be phase space variables.
In most tracking codes, when maps are produced, this mode
is selected.

The next interesting link

Big Table Summarizing many useful Operations

refers to the various Fortran90 operations available to the
programmer. These operations perform simple tasks: tak-
ing derivatives, extract the coefficient of a monomial or a
piece of the Taylor series, etc... As shown on Fig. 1, upon
clicking the mouse, the following small program will be
displayed:

program example

use polymorphic_complextaylor

implicit none

integer no,nv

type(taylor) f,df

! no: the order of the polynomial

! nv: the number of variables

no=4; nv= 2;

! initializes taylor series without maps

call init(no,nv)

! must be constructed after init

call alloc(f,df)

! Creates 2.d0 x_1 x_ 2 ^2+3.d0 x_1x_2 +4.d0

Proceedings of ICAP 2006, Chamonix, France WEPPP04

Particle Tracking and Map Methods
Accelerator Modeling

191

Figure 1: Part of the “Big Table”

f=(2.d0.mono.’12’) + (3.d0.mono.’11’) + 4.d0

! df/dx_2 Creates 4.d0 x_1x_2 + 3.d0 x_1

df=f.d.2

call print(f,6)

call print(df,6)

call kill(f,df) ! must be destroyed

end program example

This program should run without problem on all popular
platforms. As indicated in the table, it takes the derivative
of a Taylor series. These trivial examples are most useful in
conjunction with complex examples embedded in a track-
ing code [9] such as PTC. But nevertheless, they can be
used on their own.

All the remaining links are related to maps.

1. Taylor Maps: what is that good for?

2. Plain DAMAP

3. Gmap : an all purpose map

In particular, “plain DAMAP” refers to the most impor-
tant object of beam dynamics: a map from phase space to
phase space. This map, expressed around some orbit, usu-
ally the closed orbit in a ring, approximates the map of the
tracking code if an integrator is used such as PTC.

The next links are more complex and warrant a section
of their own.

OPERATIONS ON DAMAPS

In a single pass system it is sometime sufficient to look
at the coefficients of the Taylor map for the system and
immediately deduce something useful out of it. For exam-
ple, people acquainted to the famous code TRANSPORT of
Karl Brown [10], often describe the property of their sys-
tem using the plain coefficients. They will say that M166

represents the second order dispersion, i.e., the dependence
of the position on the square of the energy variable.

In a ring, things are more complex. This is because we
are interested in stability issues: what happen if a map is

iterated. In the linear case, rather than looking at M11 or
M12 directly, we perform some “diagonalization” opera-
tion, called a normal form. The objects of interest are refer-
eed to collectively as the “lattice functions” and the “tunes.”
Generally they are averages over time or turn number. The
calculational process to extract them from a Taylor map is
obviously more involved than a simple reading of the co-
efficients. These objects and their nonlinear equivalent are
readily available in the “DA/Lielib” setting provided by the
old package of Berz and the old library of Forest. FPP cre-
ates Fortran90 types to overload all the operations in order
to use a friendly syntax. For example, if we concatenate
two DAMAPs of phase space A and B, and copy the result
in C, the syntax is simply:

C = B ∗ A (1)

This simple expression replaces amongst other things:

call etcct(B%v%i, A%v%i, C%v%i) (2)

Here “A%v(1:6)%i” is an array of six integer pointers to
Berz’s package. In fact, the Lielib routine etcct calls
DACCT , the concatenation routine of the DA-package.
We should point out that “∗” is a “differential algebraic”
concatenation: it ignores the constant part of the map. It
is also possible to make a “truncated power series algebra”
concatenation (TPSA) using the syntax:

C = B.o.A (3)

The myriad of such operations is partly explained if one
follows the link:

• Tables Summarizing many useful Operations related
to DAMAP

Clicking on the above link gives the reader the following
choices:

1. Map Concatenation

2. Norm of a Map

3. Power of a Map

4. Partial Inversion of a Map

5. Vector Fields Action on Taylor Series

6. Various Lie Representation of the Map (besides Nor-
mal Form)

7. Exponentiation of the Vector Fields of the above rep-
resentations using Texp

8. Transforming Vector Fields by Map Directly: Differ-
ential Algebraic Operation Only

9. Available DA Concatenation

10. Simple Numerical Operations on DAMAPs

WEPPP04 Proceedings of ICAP 2006, Chamonix, France

192 Particle Tracking and Map Methods
Accelerator Modeling

Figure 2: Concatenation Table

For example under item #1, Map Concatenation, a table
is displayed.

By clicking on the entries of the table one gets an exam-
ple program and/or an explanation. Several other tables are
present on this page:

Figure 3: Vector Field

Table 3 describes the syntax to generate maps using a
single vector field as done in the code COSY-INFINITY [4]
of Berz.

Figure 4: Various Lie Representations

In Table 4, the reader is exposed to three important Lie
representations of the map which appear naturally in per-
turbation calculations, namely in normal forms.

There are three additional tables on that page. The reader
should visit the site and click around!

NORMAL FORM

The last big topic introduced on the main page of the
web site is normal form. By clicking on the link

Normal Form : A type Central to Accelerator Calculations

one accesses some simple information on normal forms.
First there is an FPP program that computes numerically
the tune shift with amplitude in a pendulum which can also
be solved analytically. The result is compared with the cor-
responding FPP program.

An less trivial example involving the code PTC is also
provided. The user is given access to a flat file of the ALS
(the Berkeley Advanced Light Source) and the main pro-
gram of PTC which reads this file and produces a Twiss
table around that machine.

Finally at the end of the main page, we address the issue
of the resonance basis or the phasors as they are known in
accelerator physics. These are very useful when looking
into the resonance content of a map.

CONCLUSION

The main purpose of this web site is to provide simple
examples that are supposed to compile and run flawlessly.
It is not a web site on the theory and analysis of Taylor
maps. It is most useful if one is trying to understand the
syntax and logic of an existing FPP/PTC piece of code.

For the theory, one should consult appropriate references
and pray that this type of work will start appearing in ac-
celerator schools.

REFERENCES

[1] E. Forest and F. Schmidt. The “full polymorphic package”
(FPP). ACM SIGPLAN Fortran Forum, 20:12–17, 2001.
(N.Y., USA).

[2] M. Berz. Part. Accel., 24:109, 1989.

[3] E. Forest, M. Berz, and J. Irwin. Part. Accel., 24:91, 1989.

[4] M. Berz. COSY INFINITY Version 8. Technical report,
Michigan State University, January 2000.

[5] E. Forest. Geometric integration for particle accelerators. J.
Phys. A: Math. Gen., 39:5321–5377, 2006.

[6] E. Forest, M. F. Reusch, D. Bruhwiler, and A. Amiry. The
Correct Local Description for Tracking In Rings. Part. Ac-
cel., 45:66, 1994.

[7] E. Forest. Beam Dynamics: A New Attitude and Framework.
Harwood Academic Publishers, Amsterdam, The Nether-
lands, 1997.

[8] M. Berz. The method of power series tracking for the math-
ematical description of beam dynamics. Nucl. Instr. and
Meth., A258:431, 1987.

[9] E. Forest, F. Schmidt, and E. McIntosh. Introduction to the
Polymorphic Tracking Code. Technical Report CERN-SL-
2002-044, KEK-Report 2002-3, CERN/KEK, 2002.

[10] K. L. Brown. A First and Second Order Matrix Theory for
the Design of Beam Transport Systems and Charged Particle
Spectrometers. Technical Report SLAC Report 75, SLAC,
June 1982.

Proceedings of ICAP 2006, Chamonix, France WEPPP04

Particle Tracking and Map Methods
Accelerator Modeling

193

