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Abstract

Simulations indicate that the dynamic aperture of the
proposed ILC Damping Rings is dictated primarily by the
nonlinear properties of their wiggler transfer maps. Wig-
gler transfer maps in turn depend sensitively on fringe-
field and high-multipole effects. Therefore it is impor-
tant to have a detailed and realistic model of the interior
magnetic field, including knowledge of high spatial deriva-
tives. Modeling of these derivatives is made difficult by
the presence of numerical noise. We describe how such
information can be extracted reliably from 3-dimensional
magnetic field data B(r) on a grid as provided by vari-
ous 3-dimensional finite element field codes, for example
OPERA-3d available from Vector Fields. The key ingredi-
ents are the use of surface data and the smoothing property
of the inverse Laplacian operator. We describe the advan-
tages of fitting on an elliptic cylindrical surface surround-
ing the beam.

INTRODUCTION

One critical factor in the success of the proposed In-
ternational Linear Collider will be the design of high-
performance damping rings. The damping rings must pro-
duce beams with very low emittance while maintaining
beam polarization and a sufficiently large acceptance. The
dynamic aperture of these damping rings is critically de-
pendent on the quality of the wiggler magnetic field [1].
Often dynamic aperture studies have employed idealized
wiggler models [2, 3]. We describe how to obtain a de-
tailed and realistic model of the interior wiggler field, from
which realistic transfer maps may be constructed. In par-
ticular, we desire a representation for the vector potential
that is analytic (so that high derivatives can be computed),
satisfies Maxwell’s equations exactly, ∇×∇×A = 0, and
accurately represents the magnetic field.

Expanding about a design orbit through the wiggler at a
longitudinal location z yields representations for the com-
ponents of A of the (truncated) form

Aw(x, y, z) =
L∑

l=1

aw
l (z)Pl(2;x, y). (1)

Here w = x, y, or z and the Pl(2;x, y) are the various
homogeneous monomials in the two transverse deviation
variables (x, y). The deviation variable Hamiltonian H is
determined in turn by the Hamiltonian K with z as the in-
dependent variable. In Cartesian coordinates, and in the

absence of electric fields, K is given by

K =
−(p2

t/c
2−m2c2−(px−qAx)2−(py−qAy)2)

1
2 − qAz ,

(2)

and has the (truncated) expansion

H = H2 +H3 + · · · +Hn

=
S∑

s=1

hs(z)Ps(6;x, px, y, py, τ, pτ ). (3)

Here the Ps(6; · · ·) are the various homogeneous monomi-
als in the six phase-space deviation variables, and the Hm

denote the sum of all such terms that are homogeneous of
degreem.

Charged-particle motion through the wiggler is de-
scribed by a symplectic transfer map M. Through aberra-
tions of order (n−1) such a map has the Lie representation
[4, 5]

M = R2exp(: f3 :)exp(: f4 :) · · · exp(: fn :) (4)

where R2 describes the linear part of the map. The upper
limits L and S in the sums (1) and (3) are determined by n.
For example, if n = 6 then L = 27 and S = 923.

The linear map R2 and the Lie generators fm are deter-
mined by solving the equation of motion Ṁ = M : −H :.
We conclude that what we need is a Taylor expansion for
the vector potential components Aw in the deviation vari-
ables x and y. Their z-dependent coefficients aw

l (z) must
be accurately determined from a knowledge of B.

In general we may have measured or numerical mag-
netic field data on a discrete mesh of points. The required
high derivatives of A cannot be reliably computed directly
from this data by numerical differentiation due to numer-
ical noise whose effect becomes progressively worse with
the order of derivative desired. The effect of this noise, and
its amplification by numerical differentiation, can be over-
come by fitting on a bounding surface far from the axis.
We consider, in particular, field data supplied in the domain
between pole faces of wiggler magnets with small gap and
wide poles (Fig 1). Fitting is done using a cylinder with
elliptical cross-section. This approach preserves the desir-
able features of previous approaches that have employed a
cylinder with circular cross-section [6], while it improves
insensitivity to errors in the boundary data by exploiting the
wide pole-face geometry.

As an application, we produced a transfer map for the
proposed ILC (CESR-c type) wiggler using data provided
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Figure 1: An elliptical cylinder fitting between the pole
faces, having large major axis, and extending beyond the
fringe-field region.

Figure 2: End view of 3-d mesh on which B is given.

by finite element computations [7, 8]. Values of B were
provided on a rectangular mesh along the full length of
the wiggler including the fringe-field regions. The normal
component of B on the surface of an elliptical cylinder was
obtained by interpolation using polynomial splines (Fig 2).
This normal component on the surface was then used to
compute the desired interior expansion (1) for A using the
scalar potential as an intermediate quantity. The normal
component of B on the surface may be written in terms of
the scalar potential ψ in elliptic cylindrical coordinates as:

B̃u(u = U, v, k) = [∂uψ(U, v, k)]/
√
J(U, v), (5)

∂uψ(U, v, k) =
∞∑

m=1

[Fm(U, k)sem(v, q) +Gm(U, k)cem(v, q)].(6)

Here sem and cem are Mathieu functions [9, 10], J(u, v)
is the Jacobian of the mapping from Cartesian to elliptic

coordinates, and q = −k2f2/4 where f is the distance of
the focus of the ellipse to the axis. All desired quantities
may now be written in terms of on-axis gradients Cr,s(z),
Cr,c(z), given by

C [m]
r,α (z) =

im

2rr!
1√
2π

∫ ∞

−∞
kr+meikzβα

r (U, k)dk (7)

where

βs
r(U, k) =

∞∑

m=0

gm
s (k)B(m)

r (k)
[
Fm(U, k)
Se′m(U, q)

]
, (8)

βc
r(U, k) =

∞∑

m=0

gm
c (k)A(m)

r (k)
[
Gm(U, k)
Ce′m(U, q)

]
. (9)

Here Sem and Cem are modified Mathieu functions, and
the functions gm, B(m)

r , A(m)
r are independent of the ge-

ometry or surface data. The key feature of this technique
is that results are relatively insensitive to surface errors due
to the smoothing property of the inverse Laplacian opera-
tor. That is, each kernel multiplying the surface functions
Fm andGm falls off rapidly with frequency k. As a result,
high frequency noise in the boundary data has little effect
on the functions C [m]

r,α .
A partial test of the accuracy of this procedure (and on

the quality of the magnetic data on the mesh) is that the
magnetic field computed from the surface data should re-
produce the magnetic field at the interior mesh points. In
the case of midplane symmetry, the vertical field through
terms of degree four is given in terms of the on-axis gradi-
ents (7) by the relation

By = C1(z) + 3C3(z)(x2 − y2) − C
[2]
1 (x2 + 3y2)/8

+C
[4]
1 (z)(x4 + 6x2y2 + 5y4)/192 − C

[2]
3 (z)(3x4

+ 6x2y2 − 5y4)/16 + C5(z)(5x4 − 30x2y2 + 5y4).
(10)

There are similar expressions for the other components of
B and the components of A. (We reiterate that on-axis gra-
dients are obtained using only information about the field
on the elliptic cylindrical boundary, and Maxwell’s equa-
tions are satisfied by construction.) The fit obtained for the
vertical field of the proposed ILC wiggler is shown in Fig
3. It employed an elliptical cylinder with semimajor axis
4.4cm and semiminor axis 2.4cm. The field at x = 0.4cm,
y = 0.2cm was computed along the length of the wiggler
using the Taylor series given in (10). Note in particular the
excellent fit to the fringe-fields. Other components of B are
fit equally well. A more demanding test of our procedure
has been made by verifying that values for fields and their
high derivatives as computed numerically from surface data
agree with analytically computed values in the soluble case
of fields arising from arrays of magnetic monopoles.

The previous technique can be used effectively for
straight-axis magnetic elements. For elements with signifi-
cant sagitta, such as dipoles with large bending angles, we
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Figure 3: Fit obtained to proposed ILC wiggler vertical
field using an ellipse with xmax = 4.4cm, ymax = 2.4cm.
The solid line is computed from surface data; dots are nu-
merical data provided by OPERA-3d.

must generalize to more complicated domains for which
Laplace’s equation is no longer separable. Surface data can
again be used to fit interior data provided both ψ and the
normal component of B are available on the surface. In
this case, surface data are integrated against a geometry-
independent kernel [11]. Analogous smoothing behavior
occurs. We have implemented such a routine for fitting data
onto the surface of a bent box. The routine has again been
benchmarked using arrays of magnetic monopoles. We ver-
ify that ∇ · B = 0 and ∇ × B = 0 to machine precision,
while Taylor coefficients produced were accurate to 10−6.

In summary, surface methods provide a reliable and nu-
merically robust method to extract transfer maps from nu-
merical field data. The smoothing property of the inverse
Laplacian operator ensures that computed derivatives are
insensitive to errors in the surface data. Such methods pro-
vide a promising approach to modeling dynamics in the
ILC damping rings and to the general problem of comput-
ing realistic transfer maps for real magnets with compli-
cated fringe and high-order multipole error fields.
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