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Abstract

A new algorithm and mode has been developed for the
matching in MAD-X [1]. The new algorithm, called JA-
COBIAN, is able to solve a generalized matching problem
with an arbitrary number of variables and constraints. It
aims at solving the corresponding least square problem.
The new mode, called USE MACRO, allows the user to
construct his own macros and expressions for the defini-
tion of the constraints in a matching problem. The new
algorithm combined with the macro constructs was suc-
cessfully used for finding optic transitions and a non-linear
chromaticity correction. This new approach can be seen as
a major upgrade of the matching capabilities of MAD-X
taking advantage of various modules like twiss, ptc, track,
survey, aperture, etc.

INTRODUCTION

MAD-X provides several different matching algorithms.
The most used are LMDIF and SIMPLEX (the names corre-
sponds to statements used in the MAD-X language). The
LMDIF implementation in MAD-X, is generally fast but
limited to problems where the number of variables is not
greater than the number of constraints. Also the constraints
have to be differentiable in order to avoid numerical in-
stabilities. SIMPLEX is suited for a more general class of
problems where the constraints can be non-differentiable.
It’s slower then LMDIF and the control over the variable
bounds is weak.

The new matching routine JACOBIAN has been devel-
oped in order to solve problems for an arbitrary number
of variables and constraints. The variables can be with or
without bounds. In particular, this method is very well
suited for constrained problems where the variables are
already close to the solution. Several options have been
added in order to get a finer control on the variable bounds
(see SLOPE option in VARY command [1]);

Until now MAD-X was able to match quantities pro-
vided by TWISS and stored in the TWISS or SUMM table. The
new mode USE MACRO has been developed to allow the user
to define his own observables and allowing to use most of
the MAD-X modules.

JACOBIAN

The algorithm is based on the Newton-Raphson method.
A matching problem can be defined as

c = f(v)

where c is the vector of c constraints, v is the vector
of v variables and f is the vector field representing the

accelerator observables.

If c0 = f(v0) is a solution for c0 close to c then

c = c0 +
Df

Dv
(v0)δv + O

(
|δv|2

)

and the solution is found iteratively using

v = v0 + αnδv
Df

Dv
= J δv = J−1(c − c0).

where J is the Jacobian of the transformation, δv is the
vector which points to the solution, αn is the succession
2−n and n is chosen such that the penalty function |c − c0|
is smaller than the previous step (see the BISEC option in
[1]).

The Jacobian of the transformation must be well condi-
tioned and must have the maximum rank. This condition
can be achieved by using the WEIGHT option and a proper
choice of variables.

If J is square matrix (c = v) the system can be inverted
exactly. In the case the matrix is rectangular (v > c or v <
c), the system is inverted by a QR or LQ decomposition
yielding the minimization of |c − c0| or |δv| respectively
(see [2]).

If a constraint is given in the form of an inequality, one
has to distinguish the following cases. If the inequality is
already fulfilled by the variables, the relative equation of
the linear system is removed. Otherwise, if the inequality
is not already fulfilled, it is treated as an equality.

If a variable exceeds its boundaries during each iteration
and if v > c, the variable is excluded from the set and the
linear system is solved again. Otherwise if v = c or there
were too many exclusions the variable is assigned to the
limit of the boundary. This behavior can be controlled by
the STRATEGY option (see [1]).

Before the matching process, the following transforma-
tions can be applied to the variable vector: a uniform ran-
dom vector is added to the variables (see RANDOM in [1]) in
order to avoid local minima; the values of the variables are
moved towards a desired value in order to force the final
solution to be close to those values (see COOL, BALANCE,
OPT [1]).

Figure 1 shows the scheme of the algorithm.

USE MACRO

The idea behind the new matching mode is to allow
the constraints to be user defined expressions evaluated by
macros.

MAD-X has the following features: the macros mecha-
nism allows to group the action of the MAD-X modules,
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start

apply COOLinit and RANDOM

 reset values
 out of boundaries 

compute penalty

end

main loop

repeat

input errors
 or converged

reset variables
 out of boundaries

 compute penalty

not converged

converged

calculate jacobian

reset solution vector

print jacobian

STRATEGY=2

cut ineffective 
 constraints

invert jacobian

update the starting point

error STRATEGY=1

cut variables

variables
 out of boudaries

 and STRATEGY=3

yes

no

restore cuts

jacobian 
 overdetermined or

 too many cuts

Figure 1: Algorithm of the JACOBIAN routine

the modules generally make accessible their results in ta-
bles and variables, the expressions allow to define functions
of these quantities (see TABLE in [1]).

The USE MACRO mode groups these functionalities for
the definition of a matching problem.

The USE MACRO mode is implemented using a syntax
which is slightly different from the old style matching and
there are two variants:

• using an already defined macro

m1: macro= {y=(x-3.5)*(x+2)*(x-4); };
match,use_macro;
vary,name=x;

use_macro: name= m1;
constraint,expr= y=0;
jacobian,tolerance=1.e-24;

endmatch;

• or an implicit definition of the macro

match,use_macro;
vary,name=x;
m1: macro= {y=(x-3.5)*(x+2)*(x-4); };
constraint,expr= y=0;
jacobian,tolerance=1.e-24;

endmatch;

For a full explanation refer to the MAD-X manual ([1]).
It’s worth noting that more than one set of macro and

constraints can be specified in sequence:

match,use_macro;
vary,name=x;

m1: macro= {y=(y-3.5)*(x+2)*(x-4); };
constraint,expr= y=0;

m2: macro= {y=(y-3.5)*(x-1.4)*(x+3.5); };
constraint,expr= y=0;
jacobian,tolerance=1.e-24;

endmatch;

This allows a great flexibility in defining complex con-
straints.

REAL LIFE EXAMPLE

The next example shows the correction of the first and
second order chromaticity in the LHC using all the avail-
able sextupoles families independently.

A macro called madchrom can be defined to compute
the first order chromaticity using the TWISS command and
the second order using two times the TWISS command off-
momentum and a finite difference.

madchrom: macro={
twiss;
qx0=table(summ,q1);
qx1=table(summ,dq1);
qy0=table(summ,q2);
qy1=table(summ,dq2);
dpp=.00001;
twiss,deltap=dpp;
qxpp=table(summ,q1);
qypp=table(summ,q2);
twiss,deltap=-dpp;
qxmp=table(summ,q1);
qymp=table(summ,q2);
qx2=(qxpp-2*qx0+qxmp)/dpp^2;
qy2=(qypp-2*qy0+qymp)/dpp^2;

};

This macro can be used for defining the matching prob-
lem by adding the variables and their dependent con-
straints.
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use,sequence=lhcb1;
match,use_macro;
vary, name=ksd1.a12b1; vary, name=ksd1.a23b1;
vary, name=ksd1.a34b1; vary, name=ksd1.a45b1;
vary, name=ksd1.a56b1; vary, name=ksd1.a67b1;
vary, name=ksd1.a78b1; vary, name=ksd1.a81b1;
vary, name=ksd2.a12b1; vary, name=ksd2.a23b1;
vary, name=ksd2.a34b1; vary, name=ksd2.a45b1;
vary, name=ksd2.a56b1; vary, name=ksd2.a67b1;
vary, name=ksd2.a78b1; vary, name=ksd2.a81b1;
vary, name=ksf1.a12b1; vary, name=ksf1.a23b1;
vary, name=ksf1.a34b1; vary, name=ksf1.a45b1;
vary, name=ksf1.a56b1; vary, name=ksf1.a67b1;
vary, name=ksf1.a78b1; vary, name=ksf1.a81b1;
vary, name=ksf2.a12b1; vary, name=ksf2.a23b1;
vary, name=ksf2.a34b1; vary, name=ksf2.a45b1;
vary, name=ksf2.a56b1; vary, name=ksf2.a67b1;
vary, name=ksf2.a78b1; vary, name=ksf2.a81b1;
use_macro,name=madchrom;
constraint,expr= qx1=2;
constraint,expr= qy1=2;
constraint,expr= abs(qx2)<2;
constraint,expr= abs(qy2)<2;
jacobian,calls=10,bisec=3;
endmatch;

The initial value of all the variables are implicitly set to
0. In this way the algorithm will try to minimize the sum of
the squares of the variables while fulfilling the constraints

An analysis of the different matching techniques can be
summarized as follow:

JACOBIAN It solves problem in 5 iteration for a total of
160 calls of the macro. It exploits the larger number
of variables in order to minimize the distance of the
final solution from the starting value via the LQ de-
composition.

SIMPLEX It doesn’t converge to a solution.

LMDIF It can be used for solving a simplified version of
the problem. The 32 variables has to be grouped
in 4 set equal valued variables in order to make the
number of constraints is equal to the the number of
variables. The solution found requires 50% more
sextupole strength than original solution provided by
JACOBIAN.

CONCLUSION

The JACOBIAN procedure combined with the USE MACRO
construct has been successfully used for finding smooth
optics transitions, estimations for the tunability of LHC
insertion regions ([4]) and for non-linear chromaticity
correction([3], [5],[6]).

The JACOBIAN algorithm performs better than the other
methods for problems almost linear with differentiable con-
straints when the starting point is close to the solution and
the problem has more variables than constraints.

The large flexibility allows the user to better adapt to the
complexity of his matching problem.

The USE MACRO mode extends the MAD-X matching
procedure to include simultaneous constraints on a set of
user defined observables.

Combing the USE MACRO with MAD-X expressions al-
lows to use of present and future MAD-X modules for
matching modules.
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