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Abstract

The determination of electron cloud instability thresh-
olds is a high priority task in the ILC [1] damping rings re-
search and development objectives. Simulations of electron
cloud instabilities are therefore essential to determine the
positron damping ring design. Recently, perfectly conduct-
ing beam pipes with arbitrary elliptical shapes have been
implemented as boundary conditions in the Poisson solver
package MOEVE [7]. The 3D space charge algorithm tak-
ing into account a beam pipe of elliptical shape is presented
here. The results for the electric field are compared with re-
sults simulated with different boundary conditions. In this
paper, we also present the first results from our new par-
ticle tracking program which includes the Poisson solver
MOEVE for space charge calculations.

INTRODUCTION

Damping rings are necessary to reduce the emittances
delivered by particle sources to the values required for the
linear collider. In positron storage rings, electrons pro-
duced by photoemission, ionization and secondary emis-
sion accumulate in the vacuum chamber forming an ”elec-
tron cloud” which can act back on the stored bunches. The
single bunch emittance of the positron bunches can be in-
flated through the interaction with the electron cloud. Par-
ticle tracking programs which model the interactions of a
single bunch and the electron clouds require the calculation
of the space charge fields at each discrete time step. Space
charge fields along with other applied EM fields determine
the Lorentz force which impacts the particle trajectory.

A common method to calculate the space charge fields
from spatially distributed charges is the particle mesh
method (see [5]). It requires the solution of the Poisson
equation and this solution is strongly influenced by the ap-
plied boundary conditions (b. c.). In [2] conducting b. c.
were applied to a rectangular shaped beam pipe together
with an FFT-based Poisson solver. However, the rectangu-
lar cross section is not the best approximation to the true
geometry of the beam pipe.

In this paper we present an algorithm for the solution
of Poisson’s equation with conducting b. c. on an ellipti-
cal cross section of the beam pipe. Further, we present 3D
simulation results for open (free space) and conducting b. c.
Conducting b. c. were applied to the walls of a rectangular
and elliptical pipe. Finally, we tracked a Gaussian bunch
along a drift with a new tracking program, which is still
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under development. The differences in some bunch param-
eters are shown for a bunch tracked within a rectangular
and an elliptical beam pipe, respectively.

MATHEMATICAL MODEL

A 3D domain in which the Poisson equation is usually
solved resembles a rectangular box Γ with Dirichlet b. c.
on ∂Γ1 (transversal boundary planes) and open boundary
conditions on ∂Γ2 (boundary planes of the domain in lon-
gitudinal direction). For this case Poisson’s equation reads
as

−Δϕ =
�

ε0
in Γ ⊂ R

3,

ϕ = g on ∂Γ1,
∂ϕ

∂n
+

1
r
ϕ = 0 on ∂Γ2,

(1)

where Γ = [−a, a]×[−b, b]×[−c, c] and ∂Γ = ∂Γ1

⋃
∂Γ2.

                           
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1: Cross section of the discretization domain.

For beam pipes with an elliptical cross section we con-
sider the Poisson equation on the cylindrical domain Ω
(Figure 1) with

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1
r
ϕ = 0 on ∂Ω2,

(2)

where ∂Ω1 is the side surface of the cylinder with

x2

a2
+

y2

b2
= 1 and − c < z < c,

∂Ω2 are the two elliptical bases of the cylinder satisfying
x2

a2
+

y2

b2
≤ 1 and z = ±c
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Figure 2: Electric field Ex along x-axis of a square a = b (left) and a rectangular box a = 1.5b (right) computed with
open (w/o. b. c.) and conducting b. c. on a rectangular (w. b. c.) and elliptic (elliptic b. c.) pipe.
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Figure 3: Electric field Ex along y = ±b/2 of a square a = b (left) and a rectangular box a = 1.5b (right) computed with
open (w/o. b. c.) and conducting b. c. on a rectangular (w. b. c.) and elliptic (elliptic b. c.) pipe.
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Figure 4: Electric field Ey along y = ±b/2 of a square a = b (left) and a rectangular box a = 1.5b (right) computed with
open (w/o. b. c.) and conducting b. c. on a rectangular (w. b. c.) and elliptic (elliptic b. c.) pipe.
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and being perpendicular to the z-axis. The boundary condi-
tion ϕ = 0 on ∂Ω1 means that the surface of the beam pipe
is assumed to be an ideal electric conductor. The discretiza-
tion volume in which the cylindrical computational domain
Ω is embedded (Figure 1) is the same rectangular box Γ as
in (1). The domain Γ is discretized along the x-, y- and
z-axis in Nx, Ny and Nz (in general case non-equidistant)
steps, respectively. So, the discretization of (2) with second
order finite differences leads to a linear system of equations
Au = b, where u is the vector with the potential values
and b the vector with the space charge density at the grid
points. The above linear system of equations for the do-
main Ω contains only the equations for the points which
are inside of Ω. The number of unknowns is considerably
smaller because in each (x, y)-plane all grid points outside
the ellipse are skipped. The system matrix A is block struc-
tured; however the blocks will have different dimensions
and the symmetry of A is lost in contrast to the system we
get for the rectangular domain Γ (see [6] for explanation).
Although the system matrix A is non-symmetric it is pos-
itive definite. Therefore the BiCGSTAB1 algorithm can be
applied to solve the linear system of equations. In [6] a de-
tailed description of the matrix properties and the algorithm
can be found.

SIMULATION RESULTS

Space Charge Fields

In order to compare the calculated fields with open
and conducting b. c on a rectangular and elliptical pipe,
we choose a spherical bunch with a uniformly distributed
charge of −1 nC. It is situated in the center of the beam
pipe. The bunch radius r is 10 mm (r << a, b). The elec-
tric field depends significantly on the b. c., especially in the
proximity of the boundary. Figure 2 shows the component
Ex of the field along the x-axis in a square box (a = b)
and in a rectangular box with a = 1.5b.

The difference between the electric field in open space,
in a rectangular box, and in an elliptical cylinder becomes
more evident as we move closer to the boundaries in both
directions. Figure 3 and 4 show the two transversal com-
ponents Ex and Ey along the line y = ±b/2.

Tracking Results

Recently, a tracking program has been implemented in-
cluding the new Poisson solver for space charge calcu-
lations in elliptic beam tubes. The tracking program is
based on the leap frog time integration scheme which is
described, for instance, in [3].

As an example we present here a Gaussian bunch with
σx = σy = σz = 1 mm, which has been modeled with
1,000 macro particles. The bunch has a total charge of
−1 nC and an average kinetic energy of 5 MeV. The ini-
tial particle distribution was adopted from Astra’s generator

1BiConjugate Gradient STABilized algorithm

program [4]. Figure 5 represents the initial particle distri-
bution.
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Figure 5: Initial particle distribution in longitudinal direc-
tion z = 0.0 m.

The macro particles were tracked over a time of 11 ns
which is related to a drift over a distance of z = 3.29 m.
Figure 6 and 7 show the longitudinal particle distribution at
the end of the drift. The related space charge calculations
were applied with open b. c. (Figure 6) and a circular beam
pipe with 10 mm diameter (Figure 7), respectively. After
this drift the bunch has a size of σx = σy = 1.4 mm and
σz = 1.1 mm with the space charge calculation in open
space. The tracking in the beam pipe results in a bunch
size of σx = σy = 3.3 mm and σz = 1.1 mm.
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Figure 6: Particle distribution in longitudinal direction after
tracking with open boundary conditions (z = 3.29 m).

CONCLUSION

In general we have found that electric space charge fields
inside an elliptical beam pipe found by a 3D Poisson solver
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Figure 7: Particle distribution in longitudinal direction after
tracking in a circular beam pipe (z = 3.29 m).

differ significantly from approximations which use solu-
tions of the Poisson equation in free space or in a rectan-
gular box. The largest differences are found close to the
elliptical boundary. The first tracking results show that a
bunch tracked with different b. c. has a different transversal
expansion (Figures 6 and 7) The larger transversal dimen-
sions of the bunch tracked in the beam pipe compared with
the bunch tracked with open b. c. are in accordance with
Figure 4 (the left part - for circular beam pipes). Namely,
the transversal electric field simulated in the circular pipe is
considerably larger than the same field simulated with open
b. c..
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