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Abstract
With the aid of machine learning techniques, the ge-

netic algorithm has been enhanced and applied to the multi-
objective optimization problem presented by the dynamic
aperture of the NSLS-II storage ring.

INTRODUCTION
Population-based optimization techniques, such as evo-

lutionary (genetic) [1–16] and particle swarm [17–19] al-
gorithms, have become popular in modern accelerator de-
sign. Optimization of a nonlinear lattice’s dynamic aperture
usually has multiple objectives, such as the area and the
profile of the dynamic aperture, energy acceptance, beam
lifetime [1, 3], and nonlinear driving terms (NDT) [4] etc.
Dynamic aperture and energy acceptance can be evaluated
through direct single-particle tracking simulations. NDTs
can be extracted analytically from the one-turn-map for a
given nonlinear lattice configuration [20–23]. Recent stud-
ies have found that the spread from a constant of the action
obtained with the square matrix method [24–27] represents
a kind of nonlinearity measure of a lattice, which can be
treated as an optimization objective as well. Another opti-
mization objective, which is deduced from the square ma-
trix method and used in this paper, is the spread of linear
action Jx,y from a constant. The spread is numerically com-
puted from simulated turn-by-turn data [28, 29]. Based
on the number of objectives presented in this application,
multi-objective genetic algorithm (MOGA) [30] is a suitable
optimization tool to compromise among these objectives
simultaneously.

A general model for multi-objective optimization is:

• given a set of free variables xn within the range xn ∈
[xL

n , xUn ], n ∈ [1, N];

• subject to some constraints cj(xn) ≥ 0, j ∈ [1, J], and
ek(xn) = 0, k ∈ [1,K];

• simultaneously minimize a set of objective functions
fm(xn), m ∈ [2, M].

Here xL
n , and xUn are the lower and the upper boundaries

of the nth free variables. N, J,K and M are non-negative
integers. Note for simplicity, clarity, and without loss of
generality, all constraints are lower bounds, and all objectives
are minimized.

A genetic algorithm (GA) is a type of evolutionary algo-
rithm. It can be used to solve both constrained and uncon-
strained optimization problems based on a natural selection
∗ Email: yli@bnl.gov

process [30]. Each candidate has a set of free variables
which it inherits from its parents and is mutated at random
corresponding to a certain probability. Each candidate’s free
variables xn can be regarded as an N-dimensional vector x.
Their ranges [xL

n , xUn ] define a volume of an N-dimensional
“search space”. The evolution is an iterative process. The
new population from each iteration is referred to as a “gen-
eration”. The process generally starts with a population
that is randomly generated and the fitness of the individuals
is evaluated. Individuals with greater fitness are randomly
selected, and their genomes are modified to form the next
generation. The average fitness of each generation therefore
increases with each iteration of the algorithm. The goal
of multi-objective optimization (MO) is to optimize func-
tions simultaneously. These functions are sometimes related
and their objectives may conflict. In these events, trade-offs
are considered among the objectives. In non-trivial MO
problems the objectives conflict such that none can be im-
proved without degrading others in value and are referred
to as non-dominated or “Pareto optimal”. In these cases a
non-dominated sorting algorithm can be used to judge if
one candidate is better than another [30]. In the absence of
constraints or preferences, however, all Pareto optimal candi-
dates are equally valid and given the same rank. If constraints
are provided, the rank of each individual accounts for the con-
straints, and qualified candidates are guaranteed to dominate
unqualified ones. Each qualified candidate has M fitness
values fm, which compose another M-dimensional “fitness
space”. The combination of multi-objective, non-dominated
sorting with employment of the genetic algorithm forms the
basis of the “MOGA” method. MOGA has some limitations
in its application to modern storage ring optimization. In
general, the application of MOGA on dynamic aperture op-
timization can be driven by either direct particle tracking,
or analytical calculation of nonlinear characterization. It is
time-consuming to evaluate the fitness quantitatively, as seen
with the calculation of a large-scale storage ring’s dynamic
aperture using the symplectic integrator [31].

Although there is no a priori reason why the genetic evo-
lution process needs external intervention, examples without
it such as the evolution of biological life on earth or plane-
tary formation in the solar system, were only possible after
billions of years [32]. One reason why natural evolution is
comparatively slow is that the percentage of elite candidates
among the whole population is low. A brute force method for
speeding up evolution is to narrow down the search ranges
around good candidates found early in the evolution process.
This decreases diversity, however, and could lead to a trap-
ping in local minima. An effective intervention step would
be able to significantly speed up the evolution in the desired
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direction. To do so, some machine learning techniques are
introduced to traditional MOGA methods to intervene on
the natural process.

MOGA ENHANCED BY MACHINE
LEARNING

During the evolution process, MOGA produces a large
data pool. It is possible to reuse the data with machine learn-
ing techniques to intervene on the evolution process. Here
an intervention method is introduced which is schematically
illustrated in Fig. 1. It includes the classification of the
search space (unsupervised learning), sorting based on the
average fitness and repopulation of potential elite candidates
(supervised learning). Starting with randomly distributed
individuals, the initial population is allowed to produce de-
scendants via the traditional genetic algorithm. Once all
candidates satisfy some desired constraints, sufficient data
is accumulated to intervene on the evolution process using
machine learning techniques. For each following generation,
all populations are classified into different clusters in the
search space based on a parameter D,

D =

√√√
N∑
n=1
(x1,n − x2,n)2, (1)

which represents the “Euclidean distance” between two can-
didates x1 and x2 in the search space. The classification was
performed with the K-means algorithm [33] as shown in the
subplot (b) of Fig. 1.

After classifying candidates into different clusters, a sta-
tistical analysis is carried out on each cluster to evaluate
their average or weighted fitness F, which reads as

F =
M∑
m=1

wm fm(xn). (2)

Here wm is the weight on the mth fitness value of fm. As
mentioned previously, our optimization has multiple objec-
tives. Within each generation, most of the candidates belong
to the same rank on the Pareto front. Although they are
equally good (they exhibit no dominance) and a lot of can-
didates have one or two good fitness values, the rest have
poor fitness. They can survive through many generations
unless a constraint is imposed. These types of candidates,
however, often have poor trade-offs with conflicting objec-
tives. Weighted fitness F as a measure for implementing
machine learning is therefore introduced. If all weights wm

are chosen to be 1/M , F becomes the average fitness.
The weighted fitness of individuals in each cluster are

then evaluated and sorted as illustrated in the subplot (c) in
Fig. 1. A few of the better clusters are then selected and la-
beled with the “elite” status. Some arbitrary number of new
candidates (for example, 20% of the total population) are re-
populated uniformly and randomly within the narrow “elite
range” of these elite clusters within the search space. Since
these newly populated candidates share some similarities in

Figure 1: Schematic illustration of intervention using ma-
chine learning techniques. Here, a search space of two free
variables is assumed. The distribution of the original popula-
tion is shown in the subplot (a). The candidates are classified
into three colored clusters with the K-means algorithm in the
subplot (b). The average fitness of each cluster has been eval-
uated, sorted, and given a status labeled with “Best (elite)”,
“Good”, and “Poor” respectively in the subplot (c). In the
subplot (d), some potential competitive candidates (marked
as the magenta dots) are repopulated inside the range of the
“Best (elite)” cluster and then are used to replace the same
amount of candidates from the original data pool. After
the replacement, the post-population densities of the “Good”
and the “Poor” cluster become low. In reality, there may not
exist obvious boundaries to separate each cluster and cluster
classification is not unique either.

the search space with the elite candidates thus far, they are
expected to be more competitive in regard to survivability.
From the original population, the same amount of candidates
are randomly selected, to be replaced by the newly popu-
lated candidates. The average fitness within each generation
should therefore increase respectively. This could potentially
improve the probability of producing more competitive de-
scendants favored by the optimization goals. While the next
generation undergoes the same intervention, the elite range
for the following repopulation of descendants will be dy-
namically re-defined by its own elite clusters. Note that the
average fitness is used to define the elite range for repop-
ulation. These repopulated candidates are not guaranteed
the “privilege” of being “winners” in each generation. The
final candidates still need to be selected through the non-
dominated sorting. Considering that general fitness could
have different scales in each dimension, they may need to
be normalized within a similar range, usually ∈ [0, 1], prior
to averaging them [34].

Thus far the proportion of the replacement at each genera-
tion is set to a constant value. This is referred to as the Static
Replacement Method (SRM). For the SRM, the proportion
of replacement is arbitrary, but it is necessary to maintain di-
versity among the candidates to avoid traps at local minima.
When the search space is too large, the distances D between
candidates within the same cluster are far. In this case, it is
likely that intervention would mislead evolution because the
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expectation on the “elite range” may not be accurate. An op-
tional dynamic replacement method can be used to mitigate
this issue. To judge how likely an “elite range” can produce
competitive candidates, a supervised machine learning tech-
nique is adopted. First, the candidates of an elite cluster
are divided into a training set (usually around 90-95% of its
population) and a testing set (the residual 5-10%). With the
training set data, a learning model (hypothesis) H using the
K-nearest neighboring (KNN) regression algorithm [33] is
created. The model is used to predict the testing set’s fitness
(prediction). A comparison of the prediction and each indi-
vidual’s evaluated fitness value can determine the accuracy
of the prediction. The comparison is quantitatively measured
by a parameter “discrepancy” S in the fitness space,

S =
1
M

√√√
M∑
m=1

| fm − hm |2

f 2
m

. (3)

Here, hm is the mth fitness value predicted from the learning
model H and fm is the actual fitness value. In this case, f is
evaluated from a lattice characterization code. S = 0 means
they are exactly same. A large S indicates a large discrepancy
between the hypothesis model and the actual value. Based
on the average discrepancy of the testing set, the replacement
proportion for the population can be dynamically adjusted
on a generation basis.

MOGA APPLICATION AT NSLS-II
The NSLS-II storage ring lattice [35] is used as an ex-

ample to demonstrate the application of this method. The
goal is to optimize the dynamic aperture of the operational
lattice. The linear chromaticity is corrected to +2 by chro-
matic sextupoles. The free “tuning knobs” are six families
of harmonic sextupoles with fixed polarities.

The spreads of the linear actions Jx,y computed from
turn-by-turn particle tracking simulation are chosen as the
optimization objectives. The linear action Ju is defined as

Ju,i = βuu2
i + 2αuuipu,i + γup2

u,i = ū2
i + p̄2

u,i, (4)

where ui = (x, y)i and pu,i = p(x,y),i are the turn-by-turn
coordinates in the horizontal and vertical planes respectively.
ū = 1√

βu
u, p̄i = 1√

βu
(αuu + βupu) are a pair of normal-

ized canonically conjugated coordinates, and α and β are
the linear lattice optics Twiss parameters at the observa-
tion point. In the presence of nonlinear magnets, the linear
actions have some spread from constants, as illustrated in
Fig. 2. Typically the spread gradually increases with beta-
tron oscillation amplitude. In order to obtain a sufficient
dynamic aperture, control of the nonlinearity of motion for
particles starting from different initial conditions (ampli-
tudes) is needed. Here, five sets of initial conditions are
chosen as shown in Fig. 3. The objectives are ten spreads
of actions under different sextupole settings (each initial
condition has both ∆Jx,rms/Jx and ∆Jy,rms/Jy). For each
candidate, the constraint is that all five particles can survive

for multiple turns. All objectives outlined thus far are re-
quired to be equally important to ensure that there are no
“holes” (particle loss) inside the dynamic aperture.

Figure 2: The root means squared (rms) spread of action
from a constant is used as an optimization objective. The
dashed circle represents a constant linear action at different
angles. The dots are the normalized turn-by-turn coordi-
nates.

Figure 3: Five initial particle coordinates in the x-y plane
with their conjugate momenta px,y = 0 used for tracking.
The turn-by-turn data are used to evaluate the spread of their
linear actions. The dashed line is the size of the desired
dynamic aperture. The 5th particle is chosen beyond the
desired dynamic aperture in order to obtain a safe margin.
The choice of the initial coordinates is not arbitrary. It may
depend on the local optics functions, and physical aperture,
etc.

To begin with, a random distribution is chosen in which
the entire population is uniformly distributed within ranges
limited by field saturation of the magnets and power supply
capacity. In the NSLS-II ring, the search space at each sex-
tupole dimension is K2 ∈ [0,±40]m−3 (Here ± is chosen
depending on its polarity). Initially a population total of
5,000 is cast. For the first several generations, many candi-
dates cannot survive under 5 initial conditions for dozens
of turns. Therefore, the initial population evolves under the
initial constraint of self-survival. After the evolution of 6-7
generations, all candidates can survive, but with very poor
average fitness (see Fig. 4). Thus far sufficient data may have
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already been accumulated to allow the optimizer to learn
from the history.

The K-means algorithm is then applied (using an unsu-
pervised learning technique) to classify the total population
into N = 100 clusters in the search space and each individ-
ual cluster’s average fitness is evaluated and sorted. The
top three elite clusters are selected, based on their average
fitness, to define an “elite” search range. Within this range,
20% of the total population is uniformly repopulated by ran-
dom candidates. After this intervention (repopulation), the
optimizer enters the next iteration.

With intervention, a fast convergence in the average fit-
ness has been observed during evolution. Fig. 4 compares
the evolution of the average fitness of MOGA with and with-
out machine learning. Without machine learning, the im-
provement of fitness relies heavily on random crossover and
mutation and global evolution can sometimes stop, or even
regress. With the implementation of machine learning, how-
ever, the fitness convergence becomes not only faster, but
much more steady. More importantly, the amount of com-
petitive candidates is significantly increased, which allows
for analysis of the distribution of optimal candidates in the
search space.

Figure 4: Comparison of the evolution of average fitness
with and without machine learning for 135 generations.
Without machine learning, the evolution process can some-
times stop, or even regress. On the other hand, the fitness
convergence becomes faster and steadier with the introduc-
tion of machine learning.

With each generation, all candidates are re-classified. The
elite ranges for repopulation also vary as shown in Fig. 5.
The ranges are observed to fluctuate, but gradually converge
during the evolution. For some free variables, the ranges
converged quickly to a small range of optimal values. For
example, the SL1 sextupole’s elite range shifts toward zero
(limited by its polarity). This sextupole can therefore either
be removed from the lattice, or have its polarity changed to
see if machine performance can be further improved.

In the final generation’s population, most of the candidates
are found on the Pareto front. Among them, many have good
average fitness. They are reclassified in the search space to
study their distribution. These candidates appear to belong
to many distinct groups. Each group is like an isolated island

Figure 5: Variation of the ranges for generating new elite
population in six-dimensional search space (sextupole’s K2)
along the evolution. The elite ranges fluctuate, but gradually
converge toward much narrower ranges.

Figure 6: Relative distances of six neighbors from one
elite candidate, which is used as the reference here in the
search space. The reference sextupole settings are given
as K2,SH1 = 26.20891 m−3, K2,SH3 = −17.87664 m−3,
K2,SH4 = −6.39466 m−3, K2,SL3 = −22.42607 m−3,
K2,SL2 = 28.54735 m−3, K2,SL1 = −0.22496 m−3.

in the search space. The island volumes, defined as

V =
N∏
n=1
(xun − xln), (5)

are quite different. Here, N is the number of dimensions of
the search space, and xun and xln are their upper and lower
boundaries in the nth dimension. In general, optimal can-
didates in large islands are more robust and therefore less
impacted by errors than candidates in small islands because
average fitness in large islands is less sensitive to the varia-
tion in search parameters. In Fig. 6, one island’s coordinates
are chosen as the origin to illustrate the relative distance to
the six neighboring islands. All candidates in these islands
yield decent dynamic apertures, but the sextupole settings
are quite different.

The following paragraphs describe the detailed tracking
results with the simulation code “ELEGANT” [36] and the
experimental observations. From many optimal candidates
obtained thus far, one solution is chosen and used as the
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origin in Fig. 6, to carry out machine studies. Fitness is
determined in regard to the spreads of linear actions through
numerical simulations. Tracking 5 particles with different
initial conditions is carried out. Their normalized conjugate
position-momentum coordinates are shown in Fig. 7. Here,
5 initial conditions are used that differ from those used in
the optimization setting (see Fig. 3). The maximum rms
spread with the initial condition x = 20 mm and y = 3 mm
(the outer ring in the plot) is around 3%, indicating that the
motion is quite regular.

Figure 7: Simulated multi-turn trajectories in the phase
space (left: the horizontal plane, right: the vertical plane)
for five different initial conditions. The maximum spread for
the initial condition x = 20 mm, px = 0 mrad and y = 3 mm,
py = 0 mrad is around 3%.

A frequency map analysis has been carried out for both
the on-momentum dynamic aperture (Fig. 8 and Fig. 9), and
the off-momentum acceptance (Fig. 10). The dynamic aper-
ture has small nonlinear diffusion [37]: up to 35 mm in the
horizontal plane, and 13 mm in the vertical plane as shown
in Fig. 8. In the meantime, this particular candidate has large
tune-shift-with-amplitude coefficients, which can trap many
resonance lines into a very thin stop-band width [38,39] (see
Fig. 9). The robustness of this candidate has been confirmed
by including the realistic NSLS-II magnet errors.

In this example, after the on-momentum dynamic aperture
is optimized, the energy acceptance appears to be sufficient
in the view of beam lifetime (see Fig. 10). The same obser-
vation holds for other optimal candidates. For the NSLS-II
storage ring, it would appear that the two objectives, dynamic
aperture and energy acceptance, may not conflict with each
other. Should the dynamic aperture and energy acceptance
conflict as optimization objectives in other synchrotrons, it
is possible to include some off-momentum particle’s actions
as the optimization objectives.

After testing several evolved candidates on the NSLS-II
storage ring, located on different islands within the search
space, all yield sufficient dynamic aperture and energy ac-
ceptance, and therefore sufficient beam lifetime, for nominal
operating conditions. A brief discussion of one particular ex-
perimental study period follows. During this time, beam was
brought to third order tune resonance 3νx = 100 with the
same lattice used for the tracking simulation with interesting
results.

Figure 8: Dynamic aperture for on-momentum particles.
The color represents the tune diffusion obtained by turn-
by-turn tracking simulation. Diffusion [37] is defined as
the difference of tunes ∆ν extracted from the different time
durations Diff=log10

√
∆ν2

x + ∆ν
2
y . A cool color means the

motion is less chaotic and vice versa.

Figure 9: Frequency map corresponding to the on-
momentum dynamic aperture in the x − y planes. A large
tune-shift-with-amplitude is observed in this lattice. The
third order resonance line can be crossed stably (without
obvious diffusion).

The simulated frequency map of the on-momentum dy-
namic aperture in Fig. 9 indicates that the third-order res-
onance 3νx = 100 was safely covered within the dynamic
aperture, with no obvious diffusion (nonlinearity) observed
in the tune space. The turn-by-turn particle tracking sim-
ulation further shows that the third order resonance has a
very narrow stop bandwidth, which can “trap” particles once
their trajectories are located inside the islands in the phase
space (Fig. 11). During the study period, the machine’s hor-
izontal tune νx was set to 33.332. A short bunch train of
25 buckets was displaced to a particular amplitude using
a pulse magnet (pinger). The amplitude of displacement
chosen was ≈ 0.4 mm, measured at the center of the straight
section where βx = 21 m. This particular amplitude allowed
the beam horizontal fractional tune to approach as close as
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Figure 10: Frequency map of energy (momentum) accep-
tance in the x − δ planes. Here δ = ∆p

p is the particles’
relative momentum deviation.

possible to 1/3 ≈ 0.3333 · · · (the right subplot in Fig. 12).
The beam turn-by-turn trajectories were then observed to be
trapped in three isolated islands in the phase space (the left
subplot in Fig. 12). The beam began to circulate around the
ring on a closed, stable orbit with the periodicity 1/3 (see
Fig. 13). A similar study was demonstrated and reported on
in [40, 41].

Figure 11: Simulated turn-by-turn trajectories in phase
space. A large tune-shift-with-amplitude coefficient shifts
the tune away from the third order resonance quickly when
the betatron amplitude is slightly off. The stop-band width
for this lattice is narrow, which means particle motion is
stable even if its tune sits on the resonance.

The closed orbit with a 1/3 periodicity repeats itself ev-
ery 3 turns as illustrated in Fig. 13. It has some potentially
interesting applications in dynamics and time-of-flight exper-
iments [42]. For example, using a bunch-by-bunch excitation
technique [43,44], selected bunches can be displaced in this
closed orbit while keeping the rest of the bunches in the
original central orbit. Thus each synchrotron radiation port
can deliver up to four distinct x-ray beams. The x-ray beams
can have different horizontal positions and angles, and par-
ticularly different, distinct time structures. This technique

Figure 12: Left: measured beam turn-by-turn trajectories in
the phase space with two neighboring beam position moni-
tors (BPM). Three isolated islands are observed with a phase
advance of 2π

3 in-between as expected. Right: the FFT spec-
trum confirms that the beam remains stable on the third order
resonance.

Figure 13: Measured closed orbit at νx = 1/3 with BPM
turn-by-turn data. The periodicity of the closed orbit became
1/3 rather than 1. In other words, the closed orbit repeated
itself every 3 turns.

and its implications, however, are beyond the scope of this
paper and require further development and study.

SUMMARY
The evolution process of the genetic algorithm is signif-

icantly sped up when enhanced by machine learning and
applied to the NSLS-II storage ring’s dynamic aperture. In-
tervention via machine learning not only speeds up evolution,
but increases the number of elite candidates in the data pool.
The quality of some optimal candidates obtained with this
technique have been confirmed experimentally on the NSLS-
II ring and by simulation. This technique can be applied
to other population-based optimization problems such as
particle swarm algorithms. Extending it to an online mode
would be a next logical step and would be driven by a real
storage ring’s TbT data [45, 46].
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