
COMPARISON OF MODEL-BASED AND HEURISTIC OPTIMIZATION
ALGORITHMS APPLIED TO PHOTOINJECTORS USING

LIBENSEMBLE
N. Neveu∗, L. Spentzouris, Illinois Institute of Technology, Chicago, USA

J. Larson, S. Hudson, Argonne National Laboratory, Lemont, USA

Abstract

Genetic algorithms are commonly used in the accelerator
community and often require significant computational re-
sources and manual adjustment of hyperparameters. Model-
based methods can be significantly more efficient in their
use of computational resources, but are often labeled as un-
reliable for the nonlinear or nonsmooth problems that can
be found in accelerator physics. We investigate the behavior
of both approaches using a photoinjector operated in the
space-charge-dominated regime. All model-based optimiza-
tion runs were coordinated and managed by libEnsemble,
a Python library at Argonne National Laboratory.

ARGONNE WAKEFIELD ACCELERATOR
FACILITY INTRODUCTION

The Argonne Wakefield Accelerator (AWA) facility
houses two photoinjector beamlines. Ongoing research ef-
forts at the AWA includes emittance exchange photocathode
studies and two-beam acceleration experiments [1], the latter
of which motivates this work. Figure 1 shows the layout of
the AWA bunker during two-beam accelerator experiments.
The high-charge beamline, often referred to as the drive
beam, is being modeled in this work.

CODE AND RESOURCES

The particle-in-cell code OPAL [2] is used to simulate the
high charge beam line at the AWA. OPAL is an open-source
parallel code with two version, OPAL-t and OPAL-cycl.
The former was used for this work, the latter version is used
for modeling cyclotrons. OPAL can also simulate 3D-space
charge, 1D coherent synchrotron radiation, and wakefield
effects. Note that the optimization methods being compared
in this study are applicable to any beam-dynamics code—
Parmela [3], ASTRA [4], GPT [5], all of which have been
used by AWA group members—not just OPAL-t.

All simulations were run on the Bebop cluster maintained
by the Laboratory Computing Resource Center [6] at Ar-
gonne National Laboratory. Bebop machine consist of 664
Broadwell nodes, and 352 Knights Landing (KNL) nodes.
The simulations presented here were performed on KNL
nodes, due to short queue times and readily available re-
sources.

∗ nneveu@hawk.iit.edu

OPTIMIZATION METHODS

Heuristic Method: Genetic Algorithm

Genetic Algorithms (GA) are a popular choice for opti-
mizing simulations in the accelerator physics community.
They have been used with success on several types of accel-
erator physics problems that address challenges facing both
linear and circular machines [7]. It is not disputed that in
these solutions were found with benefit to many facilities.
However, it is also well-known that GAs are computationally
intensive. They can require hundreds of thousands of core
hours depending on the problem being solved. Performing
optimization with fewer calls to the simulation would not
only save time, but would also enable facilities to accom-
plish more design work without access to large core hour
allocations.

Model Based Methods: APOSMM + BOBYQA

Model-based derivative free methods are increasingly pop-
ular in mathematics and other scientific domains, but have
not been widely used in the accelerator physics community.
This may be due to the assumption that these methods may
become within local minima within a bounded search space.
In a sense, this is true if the algorithm is always started
with the same initial conditions and weights. However, if
the algorithm is started multiple times with various initial
conditions, this behavior may be mitigated.

In order to achieve a multistart approach, the asyn-
chronously parallel optimization solver for finding multiple
minima (APOSMM) [8] was used. This algorithm main-
tains a history of all previously evaluated points, and uses
this information when deciding starting points for local op-
timization runs. APOSMM also allows concurrent local
optimization runs while honoring the amount of resources
available. For details on how local optimization points are
determined, see [8, Section 3].

In this paper, we use the bounded optimization by
quadratic approximation (BOBYQA) [9] local optimization
method. After a set of simulation evaluations are finish, the
beam parameters (i.e. objectives) at the desired location are
fed to BOBYQA. The algorithm then builds and minimizes
a quadratic model of the objectives in order to pick the next
point to evaluate.

Both APOSMM and BOBYQA implementations used are
open source, freely available, and written in Python.

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-SAPAF03

SAPAF03
22

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

E-2 Design, Optimization, Control



Figure 1: Layout of the AWA bunker. The drive beam with high charge is located on the right side of the image and the
witness beam with lower charge and energy is shown on the left side of the image.

LIBENSEMBLE
libEnsemble is a library developed at Argonne for man-

aging ensemble-like collections of computations. This li-
brary is capable of coordinating concurrent simulation evalu-
ations and optimization algorithms. In the past, using a local
optimization method in a multistart fashion required many
serial runs, or much time spent on the users end to decide
initial starting points and manage resources. libEnsemble
in combination with APOSMM manages allocations and
resources, so that the user can focus on optimization work
and results rather than parallel programming and resource
management. Key features of libEnsemble include:

• Automatically manages the asynchronous evaluation of
calculations and, if desired, the optimization of outputs

• Helpful developers

• Open source Python code, on GitHub.

• Can run on laptops, clusters, and HPC systems

As an example of large resource management,
libEnsemble has been used to coordinate the evalu-
ation of 1,600 concurrent OPAL evaluations on 200 KNL
nodes, each with 64 cores. libEnsemble provides many
useful features for common accelerator physics use cases:

• Can gracefully kill simulation runs that loose particles
before the end of simulation (thereby saving significant
computational resources in studies with many failures)

• Gracefully kills runs that become unresponsive.

• Saves specified data into a NumPy array for easy access
and storage

• Evaluates objectives based on specific beam criteria
and z location.

• Allows for OPAL-t instances using parallel resources

This library has the potential to significantly simplify the use
of model-based and multistart algorithms for optimization

Table 1: Parameter Bounds for Linac Optimization

Variable Range Unit
Solenoid Strength 300 ≤ S1 ≤ 550 amps
Solenoid Strength 180 ≤ S2 ≤ 280 amps
Phase of Gun −20 ≤ φg ≤ 0 degrees
Cavity Phase −20 ≤ φL ≤ 20 degrees

problems. In addition, this can save time spent on program-
ming, since parallelization and allocation of resources for
concurrent runs is managed by libEnsemble instead of user
scripts.

PHOTOINJECTOR OPTIMIZATION
The beamline simulated in OPAL consisted of the gun,

two solenoids, and six linac cavities, as shown in Fig. 2.
The charge of interest was 40 nC, therefore 3D space charge
forces were calculated at all times, while the rf-field maps
were 2D. The laser radius was set at 9 mm. Cavity gradients
were set to achieve 65 MeV, with a small spread depending
on the phase in each cavity. Nine design variables (shown

Gun

S1 S2

L1 L2 L3 L4 L5 L6

Figure 2: Simulation model used in OPAL and for optimiza-
tion runs. The charge of interest was 40 nC.

in Table 1) were adjusted during the local optimization runs.
Note φL is a vector containing the six cavity phases. Three
objectives were chosen: σx , σy , σz . In this case, due to the
2D field maps, σx = σy . The three objectives reduce to two
objectives, one representing the transverse beamsize, and
one representing the longitudinal beamsize. Therefore the
beamsize is optimized at the end of the linac.

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-SAPAF03

E-2 Design, Optimization, Control
SAPAF03

23

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



First, libEnsemble was used to generate a 1,000
point random sample. These runs were then given by
libEnsemble to APOSMM. BOBYQA was used as the
local optimization method with a multistart approach. The
objective was the sum of σx , σy , and σz . All starting points
and subsequent points were chosen by APOSMM. Runs were
initiated by libEnsemble and each OPAL-t simulation was
run on four cores. libEnsemble maintained objective val-
ues and summary information needed by APOSMM after
each simulation completed. A limit of 600 evaluations was
set for the entire libEnsemble runs.

For comparison, we used the NSGA-II [10] implemen-
tation within OPAL. Examples of how to use the built-in
optimizer can be found on the OPAL wiki1. The optimiza-
tion problem was defined within an OPAL-t input file. The
results of all simulations are shown in Fig. 3.

2 4 6 8 10 12

z [mm]

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

x 
[m

m
]

random sample
APOSMM
NSGA-II

Figure 3: Comparison of GA and APOSMM optimization
results. Note onlyσx is plotted, becauseσx andσy are equal.
This is a result of using 2D symmetric field maps.

CONCLUSION
There is no significant difference in the Pareto fronts gen-

erated by NSGA-II, APOSMM, and the random sample. The
GA performed 32,967 simulation evaluations to complete
200 generations. APOSMM completed 600 evaluations with
a seed of 1,000 random points. Based on this case alone, it is
not clear yet what the time to solution difference is possible
for more complicated problems. This was a test case, where
the design variables are bounded to regions of acceptable
solutions. (The bounds were chosen based experienced gain
in prior work.) This point is illustrated by the Pareto front
of the 1,000 point random sample. It closely resembles the
two optimization methods, which indicates the problem is
well bounded. For this optimization problem, running either

1 https://gitlab.psi.ch/OPAL/Manual-2.0/wikis/optimiser

NSGA-II or APOSMM provided only marginal improve-
ment of the solutions. This suggest a random sample may
be sufficient in estimating Pareto fronts for some problems.
A significant amount of computational resources could be
saved in such cases; if a heuristic method is not used.

FUTURE WORK
Extension of this work is ongoing and will be published.

That work includes optimization problems that are not well
bounded or defined by a random sample, like the case shown
here.

ACKNOWLEDGMENTS
We gratefully acknowledge the computing resources pro-

vided on Bebop, a high-performance computing cluster op-
erated by the Laboratory Computing Resource Center at
Argonne National Laboratory. This material is based upon
work supported by the U.S. Department of Energy, Office
of Science, under contract number DE-AC02-06CH11357
and grant number DE-SC0015479.

REFERENCES
[1] J. Shao et al., “Recent Progress towards Dielectric

Short Pulse Two-Beam Acceleration,” in Proc. IPAC’18,
Vancouver, Canada, Apr-May 2018, doi:10.18429/
JACoW-IPAC2018-TUYGBE3

[2] A. Adelmann et al., “The OPAL (Object Oriented Parallel
Accelerator Library) framework,” PSI, Zurich, Switzerland,
Rep. PSI-PR-08-02, 2008-2017.

[3] L. M. Young, “PARMELA,” Los Alamos National Labora-
tory, Los Alamos, NM, USA, Rep. LA-UR-96-1835 (Revised
April 22, 2003).

[4] ASTRA Manual, April 2014, http://www.desy.de/
~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf

[5] General Particle Tracker, http://www.pulsar.nl/gpt

[6] Laboratory Computing Resource Center, https://www.
lcrc.anl.gov

[7] A. S. Hofler et al., “Innovative applications of genetic algo-
rithms to problems in accelerator physics,” Phys. Rev. ST
Accel. Beams, vol. 16, p. 010101, 2013.

[8] J. Larson and S.M. Wild, “Asynchronously parallel optimiza-
tion solver for finding multiple minima,” Math. Prog. Comp.,
vol. 10, p. 1-30, Feb. 2018.

[9] M. Powell, “The BOBYQA algorithm for bound constrained
optimization without derivatives,” University of Cambridge,
U.K., Rep. NA2009/06, Oct. 2009.

[10] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE
Trans. on Evolutionary Comp. , vol. 6, no. 2, pp. 182-197,
Apr 2002.

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-SAPAF03

SAPAF03
24

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

E-2 Design, Optimization, Control


