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Abstract
We review recent progress on the application of mode

analysis to the study of collective instabilities in electron
storage rings with Higher Harmonic RF Cavities (HHCs).
The focus is on transverse instabilities in the presence of a
dominant resistive-wall impedance, a problem of particular
relevance to the new generation of diffraction-limited light
sources. The secular equation is solved after applying a reg-
ularizing transformation, a key step to obtain numerically
accurate solutions. We provide a demonstration that with
vanishing chromaticity and in the absence of radiation damp-
ing the beam motion is always unstable. This is in contrast to
the classical Transverse-Mode-Coupling Instability (TMCI)
without HHCs, which is known to exhibit a well defined
instability threshold.

INTRODUCTION
A narrow vacuum chamber to accommodate strong mag-

nets or high-performance Insertion Devices (ID) and use
of bunch-lengthening Higher-Harmonic Cavities (HHCs)
to reduce intrabeam scattering are two distinctive features
of the new generation of storage-ring light sources. This
paper concerns itself with the HHC effect on the transverse
collective instabilities induced by the Resistive Wall (RW)
impedance, which in the new machines is a major, if not the
largely dominant, source of transverse impedance due to the
small chamber aperture.

HHCs achieve bunch lengthening by introducing an am-
plitude dependence in the synchrotron oscillation frequency
and therefore altering the linear character of the longitudi-
nal motion. The resulting frequency spread is commonly
associated with the expectation of a beneficial impact on the
beam stability, as alluded by the often-encountered ‘Landau
cavities’ designation. The reality, however, is more nuanced.
While HHCs have the potential to reduce or eliminate cer-
tain instabilities through the Landau damping mechanism,
whether they actually do depends on a number of other fac-
tors. In fact, the presence of HHCs can under some circum-
stances degrade beam stability. This is known although not
widely acknowledged for longitudinal multi-bunch instabil-
ities [1–3]. The main point to be made here is that such a
degradation can be realized in the transverse plane as well.
This paper illustrates the main results reported in [4], to
which we refer for the more technical details.

The focus is on developing a mode-analysis theory in the
presence of HHCs applicable to single-bunch instabilities
at vanishing chromaticities. We base the analysis on the
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familiar DC-conductivity, RW impedance model for a vac-
uum chamber with uniform circular cross section of radius
b, length L, and conductivity σc (cgs units):

Zy(k) =
sign(k) − i√
|k |

L
b3

√
2

πcσc
, (1)

with wake-function Wy(z) = −2L
√

c/
(
πb3

√
σc |z |

)
, for z ≤

0 (and vanishing otherwise).

THE CLASSICAL TMCI (NO HHCS)

Figure 1: Classical TMCI in the absence of HHCs: real (top)
and imaginary (bottom) parts of the mode complex-number
frequency shift ∆Ω̂ = (Ω − ωy)/ωs0 over a bunch-current
range. The red line in the top picture is the tuneshift for the
rigid dipole mode as given by Eq. (7).

In the absence of HHCs the longitudinal motion is lin-
ear and at zero chomaticities the beam is susceptible to the
Transverse-Mode Coupling Instability (TMCI). The char-
acteristic signature of the instability is the convergence of
the dipole (m = 0) and head-tail (m = −1) azimuthal-mode
oscillation frequencies at the critical bunch current [5]. The
starting point for the analysis is the linearized Vlasov equa-
tion for the perturbation

g1(r, ϕ; t) = e−iΩt
∞∑

m=−∞

Rm(r;Ω)eimϕ, (2)

written as a superposition of azimuthal modes with radial
functions Rm and depending on the longitudinal-motion
amplitude/angle coordinates (r, ϕ). The perturbation g1
has a physical interpretation as the transverse (say verti-
cal) offset of the electrons contained in the infinitesimal
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phase-space area ∆r∆ϕ centered at (r, ϕ). Mode analy-
sis entails solving an eigenvalue problem in the form of
a system of integral equations for the unknown eigenvectors
Rm(ρ) ≡ Rm(ρσz0;Ω) of the form

(∆Ω̂ − m)Rm(ρ) + i Î0e−ρ
2/2

×

∞∑
m′=−∞

∫ ∞

0
Rm′(ρ

′)Gm,m′(ρ, ρ
′)ρ′dρ′ = 0, (3)

where we have scaled the radial coordinate by the rms natural
bunch length at equilibrium ρ = r/σz0, and

Î0 =
Nrcc

(2π)3/2γνs0b3√cσcσz0

βy,uLu

2π
(4)

is a dimensionless current parameter depending on the
bunch population N , relativistic factor γ, synchrotron tune
νs0 = ωs0/ω0, undulator length Lu , where the relevant
source of RW is localized, and betatron function βy,u at the
undulator. The sought eigenvalue is the complex-number
frequency shift ∆Ω̂ = (Ω − ωy)/ωs0 from the betatron os-
cillation frequency ωy = νyω0, scaled by the synchrotron-
oscillation frequency ωs0. In Eq. (3) the kernel involves the
Bessel functions Jm and has the form

Gm,m′ = cm,m′
∫ ∞

0

dκ
√
κ

J|m |(κρ)J|m′ |(κρ′), (5)

with coefficients cm,m′ = i(m−m
′){[1 − (−1)m+m′] − i[1 +

(−1)m+m′]} × [sign(m)]m × [sign(m′)]m′ .
The conventional approach to solving the eigenvalue prob-

lem is to discretize Eq. (3) by expanding Rm(ρ) over an ortho-
normal polynomial basis. Since the bunch equilibrium is
gaussian, a natural and efficient choice for this problem is
to use Gauss-Legendre polynomials which yield fairly ac-
curate results upon retaining only a few (possibly just one)
radial-mode components for the relevant azimuthal modes
|m| ≤ mmax = 1.

Alternatively, and for this problem less efficiently, one
can introduce a discretization where Rm(ρ) is represented
as a step-wise function on a grid with nmax grid points. The
problem is reduced to finding the roots of the secular equa-
tion

det[∆Ω̂ − B] = 0, (6)

where B is a [(2mmax + 1)nmax]
2-dimension square ma-

trix. The eigenvalue-analysis result obtained with a uni-
form nmax = 40 grid and mmax = 1 is shown in Fig. 1. A
finite bunch current removes the degeneracy of the radial
modes and as its value increases the (real) frequency of
one radial-mode component after the other (all having az-
imuthal mode number m = 0) is seen to cross with those
relative to the head-tail mode m = −1, at which point the
imaginary part of ∆Ω̂ becomes positive signaling instability.
The lowest-current crossing involves the m = 0 mode with
R0(ρ) ∼ e−ρ

2/2 radial component (rigid dipole) and occurs at
Î0 ' 0.197. To good approximation the current dependence
of the real-part of the frequency shift is given by (red line in
the top picture of Fig. 1)

Re ∆Ω̂ = −Γ (1/4) Î0, (7)

where Γ (1/4) ' 3.63 is Euler’s Gamma function.
For a practical illustration loosely based on parameters

from the ALS-U design studies [6], assume that RW is the
only relevant source of transverse impedance and that it is
dominated by aggressively narrow ID vacuum chambers of
b = 3 mm radius, Table 1. There are 10 straight sections
available for IDs and we conservatively assume that the
vacuum chamber is identically narrow in all of them. Finally,
assuming copper material for the vacuum chamber (σc =

5.3 × 1017 s−1 in cgs units, or 5.9 × 107 Ω−1m−1 in MKS
units), we find a critical Nc0 = 3.3 × 1010 bunch population
for the instability threshold, equivalent to 8.1 mA single-
bunch current, vs. a design Ib = 1.76 mA.

Table 1: Beam/Machine Parameters Loosely Based on ALS-U

Ring circumference 196.5 m
Beam energy 2 GeV
Design bunch current Ib 1.76 mA
Vertical tune νy 20.368
Momentum compaction 2.79 × 10−4

Natural energy spread 0.835 × 10−3

Energy loss per turn 182 keV
Vertical damping time τy 14.4 ms
Main rf cavity voltage 0.76 MV
Main rf cavity frequency 500 MHz
Harmonic rf cavity frequency 1.5 GHz
Rms bunch length (no HHCs) σz0 3.2 mm
Linear synchr. tune (no HHCs) νs0 2.3 × 10−3

Rms bunch length with HHCs σz 13 mm
Avg. synchr. tune with HHCs 〈νs〉 0.44 × 10−3

Total ID length Lu 40 m
ID vacuum chamber radius b 3 mm
Avg. beta function along IDs βy,u 3 m

STABILITY ANALYSIS WITH HHCS
Some simplifying assumptions are made to represent the

single-particle longitudinal motion in the presence of HHCs.
The first is to approximate the total RF potential combining
main and harmonic cavities as a purely-quartic polynomial
function of the particle longitudinal-coordinate z, yielding
an exactly linear dependence of the synchrotron-oscillation
frequency on the oscillation amplitude r. This is a very
good approximation in the regime where the HHCs are tuned
for ’optimal’ (i.e. maximally flat) bunch lengthening. The
second approximation is to write z = r cos ϕ, as for an
harmonic oscillator. Somewhat surprisingly, for a purely
quartic potential this is a fairly good approximation, entailing
only a few % error [7]. With these approximations the system
of integral equations becomes

(∆Ω̂ − mρ)Rm(ρ) + i Îe−h1ρ
4

×

∞∑
m′=−∞

∫ ∞

0
Rm′(ρ

′)Gm,m′(ρ, ρ
′)ρ′2dρ′ = 0, (8)

where now the radial coordinate ρ = r/σz is scaled by the
length σz of the bunch stretched by the HHCs, the frequency
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Figure 2: Stability analysis in the presence of HHCs after
applying the regularizing transformation to the eigenvalue
problem. Real (top) and imaginary (middle and bottom)
parts of the root with largest imaginary part of the secu-
lar equation (10), as functions of the current parameter Î.
The bottom picture contains the same data as the middle
picture but on a double-log scale. In the limit of small
Î the numerical solution is consistent with the power law
Im ∆Ω̂ = (25/3 Î)6, red dashed curve in the middle picture.
Overall, the numerical solution is reasonably well fitted by
Eq. (11), red dashed curve in the bottom picture. Calculation
done with nmax = 40, mmax = 1, and ρmax = 3.

shift ∆Ω̂ = (Ω − ωy)/(h2〈ωs〉) is scaled by the synchrotron-
oscillation frequency averaged over the bunch 〈ωs〉, and the
dimensionless current parameter reads

Î =
Nrcc

π5/2γ〈νs〉b3√cσcσz

βy,uLu

2π
. (9)

exhibiting 〈νs〉, the average of the synchrotron-oscillation
tune over the bunch, in place of νs0 appearing in Eq. (4).
The quantities h1 and h2 are numerical coefficients, h1 =
2π2/Γ(1/4)4 ' 0.114 and h2 = 23/4π3/2/Γ(1/4)2 ' 0.712.

As for the integral equation, the main difference from
Eq. (3) is the appearance of the ρ dependence in the factor
multiplying Rm(ρ) in the first term. This term is familiar
from the analysis of Landau damping in plasma waves or lon-
gitudinal instabilities, raising a flag that care should be taken

to handle the singularity occurring when the above factor
vanishes for certain values of ρ. Because of the singularity,
the eigenfunctions of Eq. (8) are in general not ordinary
functions but distributions in the sense of Dirac [8, 9] and
finite-dimension approximations of the problem are not guar-
anteed to converge [10].

The proper way to proceed is to ’sweep the singularity
under the (integral) rug’ by introducing a simple change of
variable of the unknown function [11], Rm(ρ) → Sm(ρ) =
(∆Ω̂ − mρ)Rm(ρ)eh1ρ

4 , yielding the transformed integral
equations

Sm(ρ)+i Î
∞∑

m′=−∞

∫ ∞

0

Sm′(ρ′)e−h1ρ
′4

∆Ω̂ − m′ρ′
Gm,m′(ρ, ρ

′)ρ′2dρ′ = 0.

These equations can now be safely discretized with the
prescription that the integration path in ρ should be deformed
to go under the the pole if ∆Ω̂ is real or has negative imagi-
nary part. Since we are primarily interested in establishing
the condition for instability (Im ∆Ω̂ > 0) we can do without
the path deformation, provided that we take numerical care
to insure the necessary accuracy when the imaginary part of
∆Ω̂ is positive but small. An effective integration strategy is
to approximate the numerator in the integral by a piece-wise
linear or quadratic polynomial, in which case the integral
can be carried out analytically.

Upon discretization, the above equation is reduced to
the form [1 + B(∆Ω̂)] ®S = 0, where, B(∆Ω̂) is now a ∆Ω̂-
dependent, [(2mmax + 1)nmax]

2-dim matrix. Unlike Eq. (6),
the resulting secular equation

det[1 + B(∆Ω̂)] = 0 (10)
is a transcendental (vs. polynomial) equation in the fre-
quency shift ∆Ω̂ and in principle more difficult to solve.
In practice, we found that a Newton-method search appro-
priately initiated never failed to converge. The result of
our numerical analysis is shown Fig. 2, reporting real and
imaginary parts of the frequency shift of the most unstable
mode in a calculation using nmax = 40 radial grid points and
mmax = 1. The main result of this analysis is that transverse
single-bunch motion in the presence of the RW impedance
is unstable at any current.

Over a large current range the imaginary part of the fre-
quency of the most unstable mode is well fitted by the func-
tion (red dashed line in the bottom picture of Fig. 2)

Im ∆Ω̂ =
(25/3 Î)6

1 + 0.55 × (4Î)5[1 + tanh(Î/2)]
. (11)

It is tempting to make the conjecture that Im ∆Ω̂ =
(25/3 Î)6 may be the exact asymptotic limit for Î → 0. It is
seen to track the numerical data quite accurately for Î / 0.2.

Having argued that for proper numerical treatment of the
problem it is important to introduce a regularizing trans-
formation, it is nonetheless instructive to naively apply the
discretization method employed when HHCs are absent. Ef-
fectively, this is equivalent to studying a modified physics
model where the unperturbed beam distribution in phase
space consists of a set of nmax equally spaced, concentric,
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Figure 3: Stability analysis in the presence of HHCs using the conventional eigenvalue-method without the regularizing
transformation. The top (bottom) pictures show the real (imaginary) parts of the modes complex-number frequency shifts
∆Ω̂ = (Ω − ωy)/(h2〈ωs〉) as functions of the current parameter Î, for increasingly finer (left to right) grids in the radial
variable ρ, as indicated. The bottom pictures are in log scale and report only the frequencies with positive imaginary
part (unstable modes). Particularly at small Î, convergence to what we believe is the exact asymptotic solution of the
infinite-dimension problem Im ∆Ω̂ = (25/3 Î)6, valid for Î / 0.2, red dashed curve, appears slow if not outright questionable.

invariant shells. Results are shown in Fig. 3. While it is
apparent that these pictures do not extrapolate well into the
continuum limit, they provide valuable insight and suggest
that the basic mechanism of mode coupling is still at play.
First, notice that all the radial modes relative to azimuthal
mode m = 0 are degenerate but not those relative to m , 0,
even at vanishing current. This is in contrast to the longitu-
dinal linear-motion case (no HHCs), where at zero current
all radial modes for any m are degenerate. The reason, of
course, is related to the fact that particles on different radial
shells have different winding (synchrotron oscillation) fre-
quencies. The emergence of instability is triggered by the
convergence of one of the m = 0 radial modes frequency
with that of one of the m = −1 radial modes. In analogy to
the linear case, the offensive m = 0 radial mode has the form
of the bunch equilibrium R0(ρ) ∼ e−h1ρ

4 (rigid dipole). The
difference with the linear case is that coupling can now occur
at arbitrarily low current as we allow for a finer and finer
resolution of the radial beam distribution. For currents less
than Î ∼ 0.25, regions of instability appear interleaved with
regions of stability, with the extent of the latter progressively
reduced when we increase the number of grid points nmax.
The ∼ 0.25 edge corresponds to the radial extension (ρ ∼ 1)
of the beam distribution (outer shells become quickly under-
populated for ρ > 1 and do not contribute to the coupling).

THE TAKE-HOME RESULT
In electron storage rings radiation damping will eventually

prevail if the bunch current is not too high. The condition
Im Ω = τ−1

y , where τy is the vertical radiation damping
time, defines the critical current parameter Î = Îc as follows:

Im Ω = h2〈ωs〉Im ∆Ω̂ = h2〈ωs〉(25/3 Îc)6 = τ−1
y , having

restricted our analysis to the regime where the Im ∆Ω̂ ∝ Î6

power law applies. We have

Îc =
2−5/3

(h2τy 〈ωs〉)
1/6 ' 0.245 ×

(
T0

τy 〈νs〉

)1/6
. (12)

More expressively, we can relate Nc , the critical bunch pop-
ulation in the presence of HHCs, and Nc0, the critical bunch
population in the absence of HHCs, when all the relevant
machine parameters are kept unchanged while the HHCs are
turned on and off. Combining Eqs. (4), (9) and (12) gives

Nc = Nc0 ×
π

8 × 21/6 Îc0

(
1

τyh2〈ωs〉

)1/6
〈νs〉

νs0

(
σz

σz0

)1/2
,

(13)
where Îc0 ' 0.197 is the critical current parameter for the
onset of the TMC-Instability in the linear case.

Making use of the relationship between synchrotron tunes
and bunch lengths with and without HHC for the specific
case of third-harmonic cavities, see [4], we obtain the final
result

Nc ' 1.15 × Nc0

(
T0
τyνs0

)1/6 (
σz0
σz

)1/3
. (14)

Note that the quantity elevated to the 1/6 power now depends
on νs0 not 〈νs〉. Using the machine parameters from the
ALS-U example (Table 1), we find a critical current Îc '
0.168 < 0.2 placing the system in the regime of the validity
of the Im Ω̂ ∝ Î6 scaling, see Fig 2. Finally, from Eq. (14),
we conclude Nc/Nc0 ' 0.37, corresponding to Ib = 3 mA,
i.e. the instability threshold with HHCs is less than 40%
of that without. More in detail,

[
T0/(τyνs0)

]1/6
' 0.52 and
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(σz0/σz)
1/3 ' 4−1/3 ' 0.62. A macroparticle simulation

with elegant [12] confirms the ∼ I6
b

scaling, Fig. 4, and
overall is reasonably close to the theory.

Figure 4: The TMC-Instability growth rate in the presence
of HHCs vs. bunch current from macroparticle simulations
(dots) tracks reasonably well the theory (solid line). The
simulation does not include radiation damping but for refer-
ence the expected radiation damping rate (red dashed line)
is also reported. ALS-U parameters as in Table 1.

CONCLUSION
In summary, we have provided a demonstration that, in

the absence of radiation damping the transverse motion at
vanishing chromaticities is always unstable, regardless of
bunch current, with growth rate varying from a Im Ω ∼ I6

b
dependence at small bunch current Ib to Im Ω ∼ Ib for
larger Ib, the former being more likely to be encountered
in the physical systems of interest. Because of the strong
6th-power dependence, macroparticle-simulations results
could be easily misinterpreted as indicating the existence of
a current threshold if the simulation time is not sufficiently
long [13]. Finally, we caution that the formulas in the last
section are strictly dependent on the RW nature of the as-
sumed impedance model. Work to analyze impedances of
different form is left to future studies. The study presented
here is for vanishing-chromaticities. Finite chromaticities
have a known stabilizing effects. Interestingly, macropar-
ticle simulation work indicates that their stabilizing effect
is magnified not reduced by the presence of HHC, see [14]
for multi-bunch and Fig. 5 for a single-bunch study. Ex-
tension of the theory to multi-bunch instabilities and finite
chromaticities will be addressed elsewhere.
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